航空学报 > 2014, Vol. 35 Issue (12): 3213-3221   doi: 10.7527/S1000-6893.2014.0095

梯形翼高升力构型的数值模拟技术

王运涛, 李松, 孟德虹, 李伟   

  1. 中国空气动力研究与发展中心 计算空气动力学研究所, 四川 绵阳 621000
  • 收稿日期:2014-02-24 修回日期:2014-05-06 出版日期:2014-12-25 发布日期:2014-05-28
  • 通讯作者: 王运涛 男, 博士, 研究员, 博士生导师.主要研究方向: 计算空气动力学. Tel: 0816-2463037 E-mail: ytwang@skla.cardc.cn E-mail:ytwang@skla.cardc.cn
  • 作者简介:李松 男, 博士研究生, 助理工程师.主要研究方向: 计算空气动力学. Tel: 0816-7067915 E-mail: lisonic@foxmail.com;孟德虹 男, 硕士, 助理研究员.主要研究方向: 计算空气动力学. Tel: 0816-2463062 E-mail: mdh157@163.com;李伟 男, 硕士, 研究实习员.主要研究方向: 计算空气动力学. Tel: 0816-2463062 E-mail: kuaileo6@163.com
  • 基金资助:

    国家重点基础研究发展计划(2014CB744803)

Numerical Simulation Technology of High Lift Trapezoidal Wing Configuration

WANG Yuntao, LI Song, MENG Dehong, LI Wei   

  1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2014-02-24 Revised:2014-05-06 Online:2014-12-25 Published:2014-05-28
  • Supported by:

    Key Basic Research Program of China (2014CB744803)

摘要:

基于雷诺平均Navier-Stokes(RANS)方程和结构网格技术,采用亚跨超声速平台(TRIP3.0),数值模拟了美国国家航空航天局(NASA)梯形翼构型.研究了控制方程、网格密度、流动转捩和初始条件等不同影响因素对气动特性的影响.风洞试验是2002年在NASA Langley 14 ft22 ft亚声速风洞中完成的,试验结果包括了基本气动力和力矩、表面压力系数和边界层速度型分布.计算结果与试验数据的比较表明:求解完全的RANS方程,提高了翼梢涡的模拟精度;网格密度主要影响翼梢涡的强度;转捩模型提高了边界层的模拟精度,进而提高了升力系数、俯仰力矩系数的模拟精度;最大升力系数及失速迎角对初始条件具有依赖性.

关键词: RANS, 梯形翼, 流场模拟, 网格密度, 层流湍流转捩, 气动特性, 数值模拟

Abstract:

Based on the Reynolds-averaged Navier-Stokes(RANS) equations and structured grid technology, the National Aeronautics and Space Administration(NASA) high lift trapezoidal wing (Trap wing) model is simulated using TRIsonic Platform version 3.0(TRIP3.0). The influence of various factors on aerodynamic characteristics is studied, which include control equations, grid density, flow transition and initial condition. The corresponding wind tunnel experiment is conducted in the NASA Langley 14 ft22 ft subsonic wind tunnel in 2002; the experimental data includes basic force and moment, surface pressure data and velocity distribution in the boundary layer. Compared with the experimental data, the numerical results illustrate that solving the full RANS equations provides better numerical accuracy to the tip vortex; the grid density mainly affects the intensity of the wing tip vortex, better accuracy in the boundary layer with transition model results in better lift and pitch moment coefficients and the maximum lift coefficient and stall angle depend on the initial flow conditions.

Key words: RANS, trapezoidal wing, flow simulation, grid density, laminar to turbulent transition, aerodynamic characteristics, numerical simulation

中图分类号: