1 |
余莉. 气动减速技术[M]. 北京: 科学出版社, 2018.
|
|
YU L. Aerodynamic deceleration technology[M]. Beijing: Science Press, 2018 (in Chinese).
|
2 |
荣伟. 航天器进入下降与着陆技术[M]. 北京: 北京理工大学出版社, 2018.
|
|
RONG W. Spacecraft entry, descent and landing technology[M]. Beijing: Beijing Institute of Technology Press, 2018 (in Chinese).
|
3 |
贾华明, 杨霞, 李少腾, 等. 环帆伞技术与发展综述[J]. 航天返回与遥感, 2021, 42(3): 41-51.
|
|
JIA H M, YANG X, LI S T, et al. Overview of the technology and development of ringsail parachute[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(3): 41-51 (in Chinese).
|
4 |
EWING E G, VICKERS J R. Ringsail parachute design: AFFDL-TR-72-3[R]. Northrop Corporation, 1972.
|
5 |
TEZDUYAR T, SATHE S, PAUSEWANG J, et al. Air-fabric interaction modeling with the stabilized space-time FSI technique[C]∥The third Asian-Pacific Congress on Computational Mechanics. Kyoto: APCOM, 2007.
|
6 |
TAKIZAWA K, MOORMAN C, WRIGHT S, et al. Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes[J]. International Journal for Numerical Methods in Fluids, 2011, 65(1-3): 271-285.
|
7 |
GREATHOUSE J, SCHWING A. Study of geometric porosity on static stability and drag using computational fluid dynamics for rigid parachute shapes: AIAA-2015-2131[R]. Reston: AIAA, 2015.
|
8 |
甘小娇. 环帆伞结构透气量对气动性能的影响[D]. 南京: 南京航空航天大学, 2015: 25-38.
|
|
GAN X J. Effect of ringsail parachute structure permeability on aerodynamic performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 25-38 (in Chinese).
|
9 |
高畅, 余莉, 张思宇. 环片数量对环帆伞气动性能的影响[J]. 海军航空工程学院学报, 2020, 35(4): 297-302.
|
|
GAO C, YU L, ZHANG S Y. The influence of the number of rings on the aerodynamic performance of the ringsail parachute[J]. Journal of Naval Aeronautical and Astronautical University, 2020, 35(4): 297-302 (in Chinese).
|
10 |
甘和麟. 环帆伞阻力特性及其尺寸效应的研究[D]. 北京: 中国空间技术研究院, 2014: 56-58.
|
|
GAN H L. Analysis of ringsail drag characteristics and scale effects[D]. Beijing: China Academy of Space Technology, 2014: 56-58 (in Chinese).
|
11 |
杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5): 714-719.
|
|
YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5): 714-719 (in Chinese).
|
12 |
尚小娟, 童明波, 张红英. 带牵顶伞的大面积环帆伞充气性能分析[J]. 航天返回与遥感, 2010, 31(4): 21-26.
|
|
SHANG X J, TONG M B, ZHANG H Y. Performance analysis for inflation of large ringsail parachute with an apex grogue[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(4): 21-26 (in Chinese).
|
13 |
程涵, 余莉, 夏刚. 降落伞充气过程中“瓶颈”效应[J]. 国防科技大学学报, 2013, 35(1): 48-52.
|
|
CHENG H, YU L, XIA G. A study on “bottleneck” phenomenon during parachute inflation[J]. Journal of National University of Defense Technology, 2013, 35(1): 48-52 (in Chinese).
|
14 |
ANDERSON B P, GREATHOUSE J, POWELL J, et al. Sub-scale orion parachute test results from the national full-scale aerodynamics complex 80-by 120-ft wind tunnel:JSC-CN-39271[R]. Washington.D.C.: NASA, 2017.
|
15 |
DAUM J S, PETERSEN M L. Orion capsule parachute assembly system(CPAS) overload testing approach and results: AIAA-2019-3142[R]. Reston: AIAA, 2019.
|
16 |
方世兴, 黄伟, 荣伟. 盘缝带伞细化结构的仿真影响研究[J]. 航天返回与遥感, 2017, 38(2): 17-26.
|
|
FANG S X, HUANG W, RONG W. Study on the detailed structure of disk-gap-band parachute simulation[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(2): 17-26 (in Chinese).
|
17 |
贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1): 15-20.
|
|
JIA H, RONG W, CHEN G L. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery & Remote Sensing, 2009, 30(1): 15-20 (in Chinese).
|
18 |
YANG X, YU L, NIE S C, et al. Aerodynamic performance of the supersonic parachute with material permeability[J]. Journal of Industrial Textiles, 2021, 50(6): 812-829.
|
19 |
BENSON D J. Computational methods in lagrangian and eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99: 235-394.
|
20 |
ERGUN S. Fluid flow through packed columns[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94.
|
21 |
张思宇, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6): 1108-1115.
|
|
ZHANG S Y, YU L, LIU X. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1108-1115 (in Chinese).
|
22 |
王明振, 曹东风, 吴彬, 等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报, 2020, 43(6): 21-29.
|
|
WANG M Z, CAO D F, WU B, et al. Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method[J]. Journal of Chongqing University, 2020, 43(6): 21-29 (in Chinese).
|
23 |
HUGHES T J R, LIU W K, ZIMMERMAN T K. Lagrangian-eulerian finite element formulation for viscous flows[J]. Computer Methods in Applied Mechanics and Engineering, 1981, 29: 329-349.
|
24 |
赵海鸥. LS-DYNA动力分析指南[M]. 北京: 兵器工业出版社, 2003: 164.
|
|
ZHAO H O. Guide to dynamic analysis of LS-DYNA[M]. Beijing: The Publishing House of Ordnance Industry, 2003: 164 (in Chinese).
|
25 |
JASON W, NICOLAS A, BENJAMIN T, et al. Porous euler-lagrange coupling application to parachute dynamics[C]∥The 9th International LS-DYNA Users Conference, 2005.
|
26 |
王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997.
|
|
WANG L R. Parachute theory and application[M].Beijing: Astronautic Publishing House, 1997 (in Chinese).
|