收稿日期:
2023-03-07
修回日期:
2023-04-10
接受日期:
2023-04-26
出版日期:
2024-01-25
发布日期:
2023-05-06
通讯作者:
李海星
E-mail:lihaixing@comac.cc
基金资助:
Haixing LI(), Feng ZHOU, Wei YAN, Feng BAI, Keliang ZHAO
Received:
2023-03-07
Revised:
2023-04-10
Accepted:
2023-04-26
Online:
2024-01-25
Published:
2023-05-06
Contact:
Haixing LI
E-mail:lihaixing@comac.cc
Supported by:
摘要:
平尾结冰严重影响飞机的纵向操纵性及稳定性。为研究结砂纸冰对平尾气动特性的影响,采用基于某民机平尾设计的大、小模型,在低速增压风洞中开展了带砂纸冰的测力试验,分析了砂纸冰粗糙度、雷诺数、角冰粗糙度对带冰平尾气动特性的影响规律,同时总结了砂纸冰的缩比方法。结果表明:砂纸冰粗糙度增加会导致平尾气动特性逐步恶化,在飞行雷诺数条件下,当冰型粗糙度相对高度为
中图分类号:
李海星, 周峰, 颜巍, 白峰, 赵克良. 砂纸冰对民机平尾气动特性的影响[J]. 航空学报, 2024, 45(2): 128657-128657.
Haixing LI, Feng ZHOU, Wei YAN, Feng BAI, Keliang ZHAO. Effects of roughness ice on aerodynamic performance of civil aircraft horizontal tail[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128657-128657.
表3
试验车次
车次 | 模型比例 | 试验雷诺数/ | 砂纸冰目数 | 备注 |
---|---|---|---|---|
1 | 1∶4 | 3.29 | 无 | |
2 | 1∶4 | 3.29 | 40# | |
3 | 1∶4 | 3.29 | 80# | |
4 | 1∶4 | 3.29 | 120# | |
5 | 1∶4 | 13.10 | 无 | |
6 | 1∶4 | 13.10 | 40# | |
7 | 1∶4 | 13.10 | 80# | |
8 | 1∶4 | 13.10 | 120# | |
9 | 1∶4 | 6.58 | 80# | |
10 | 1∶4 | 9.87 | 80# | |
11 | 1∶4 | 3.29 | 无 | 带角冰 |
12 | 1∶4 | 6.58 | 无 | 带角冰 |
13 | 1∶4 | 9.87 | 无 | 带角冰 |
14 | 1∶4 | 13.10 | 无 | 带角冰 |
15 | 1∶4 | 3.29 | 40# | 带角冰 |
16 | 1∶4 | 3.29 | 80# | 带角冰 |
17 | 1∶4 | 3.29 | 无 | 丝线 |
18 | 1∶4 | 3.29 | 无 | 带角冰+丝线 |
19 | 1∶11 | 1.20 | 无 | |
20 | 1∶11 | 1.20 | 80# | |
21 | 1∶11 | 2.40 | 80# | |
22 | 1∶11 | 3.29 | 无 | |
23 | 1∶11 | 3.29 | 80# | |
24 | 1∶11 | 3.29 | 100# | |
25 | 1∶11 | 3.29 | 240# | |
26 | 1∶11 | 3.29 | 320# |
1 | HEINRICH A, ROSS R, ZUMWALT G, et al. Aircraft icing handbook: ADA238040, DOT/FAA/CT-88/8-2[R]. New York: Federal Aviation Administration, 1991. |
2 | KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5-6): 257-345. |
3 | 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报, 2017, 38(2): 520717. |
DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520717 (in Chinese). | |
4 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
5 | 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734. |
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese). | |
6 | 伍强, 徐浩军, 魏扬, 等. 结冰条件下飞机气动/运动耦合特性[J]. 航空学报, 2022, 43(8): 125566. |
WU Q, XU H J, WEI Y, et al. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125566 (in Chinese). | |
7 | 赵宾宾, 张恒, 李杰. 翼型结冰状态复杂分离流动数值模拟综述[J]. 航空学报, 2023, 44(1): 22-40. |
ZHAO B B, ZHANG H, LI J. Summary of numerical simulation of complex separated flow in airfoil icing state[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 22-40 (in Chinese). | |
8 | 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2): 520711. |
YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520711 (in Chinese). | |
9 | BRAGG M, BROEREN A, BLUMENTHAL L. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
10 | BRAGG M B, KHODADOUST A, SPRING S A. Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion[J]. AIAA Journal, 1992, 30(6): 1462-1467. |
11 | ADDY J H, MILLER D R, IDE R F. A Study of Large Droplet Ice Accretion in the NASA Lewis IRT at Near-freezing Conditions[C]∥ Proceedings of the International Conference on Aircraft Inflight Icing. Washington, D.C.: NASA, 1996. |
12 | BROEREN A, ADDY H Jr, BRAGG M. Flowfield measurements about an airfoil with leading-edge ice shapes[C]∥Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
13 | POTAPCZUK M G. Aircraft icing research at NASA Glenn research center[J]. Journal of Aerospace Engineering, 2013, 26(2): 260-276. |
14 | Federal Aviation Administration. Airplane performance and handling qualities in icing conditions: 25-121 [S]. Springfield: Federal Aviation Administration, 2005. |
15 | PAPADAKIS M, STRONG P, WONG J, et al. Simulation of residual and intercycle ice shapes using step ice and roughness[C]∥ Proceedings of the 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012. |
16 | 王新光, 毛枚良, 何琨, 等. 壁面函数在超声速湍流模拟中的应用[J]. 航空学报, 2022, 43(9): 126153. |
WANG X G, MAO M L, HE K, et al. Application of wall function in supersonic turbulence simulation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 126153 (in Chinese). | |
17 | WILCOX D C. Formulation of the k⁃w turbulence model revisited[J]. AIAA Journal, 2008, 46(11): 2823-2838. |
18 | 杨胜华, 林贵平, 宋馨. 粗糙壁面表面传热数值计算比较[J]. 航空动力学报, 2011, 26(3): 570-575. |
YANG S H, LIN G P, SONG X. Comparative study on the numerical computation of convective heat transfer over rough surfaces[J]. Journal of Aerospace Power, 2011, 26(3): 570-575 (in Chinese). | |
19 | PAPADAKIS M, GILE LAFLIN B, YOUSSEF G, et al. Aerodynamic scaling experiments with simulated ice accretions[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
20 | PAPADAKIS M, CHANDRASEKHARAN R, HINSON M, et al. Effects of roughness on the aerodynamic performance of a business jet tail[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
21 | ADDY H E, BROEREN A P, ZOECKLER J G, et al. A wind tunnel study of icing effects on a business jet airfoil[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
22 | PETTERSSON K, RIZZI A. Aerodynamic scaling to free flight conditions: Past and present[J]. Progress in Aerospace Sciences, 2008, 44(4): 295-313. |
23 | RUDNIK, GERMAIN. Reynolds number scaling effects on the European high-lift project configurations[J]. Journal of Aircraft, 2009, 46(4): 1140-1151. |
24 | RISIUS S, COSTANTINI M, HEIN S, et al. Experimental investigation of Mach number and pressure gradient effects on boundary layer transition in two-dimensional flow[C]∥ New Results in Numerical and Experimental Fluid Mechanics XI. Cham: Springer, 2018: 305-314. |
25 | LEE S, RATVASKY T P, THACKER M, BARNHART B P. Geometry and reynolds-number scaling on an iced business-jet wing[C]∥ 43rd AIAA Aerospace Science Meeting and Exhibit. Reston: AIAA, 2005. |
26 | BROEREN A P, ADDY H, BRAGG M, et al. Aerodynamic simulation of ice accretion on airfoils: NASA/TP—2011-216929[R]. Washington, D.C.: NASA, 2011. |
27 | 班度·N. 帕玛迪. 飞机的性能、稳定性、动力学与控制[M]. 商重阳,左英桃,夏露,等,译. 北京: 航空工业出版社, 2013: 132-164. |
PAMADIB N . Performance, stability, dynamics and control of airplanes[M]. SHANG C Y, ZUO Y T, XIA L, et al, translated. Beijing: Aviation Industry Press, 2013: 132-164 (in Chinese). | |
28 | FAA. FAR25 Airworthiness standards: Transport category airplane [S]. Seattle: FAA, 2007. |
29 | ANDERSON D N. Manual of scaling methods: NASA/CR-2004-212875[R]. Washington, D.C.: NASA, 2004. |
30 | 张建, 李勤红, 屈飞舟, 等. 运输类飞机平尾失速敏感性及其试飞技术研究[J]. 飞行力学, 2011, 29(5): 73-76. |
ZHANG J, LI Q H, QU F Z, et al. Transport aircraft tailplane stall susceptibility and flight test technique[J]. Flight Dynamics, 2011, 29(5): 73-76 (in Chinese). | |
31 | 李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015: 22-25. |
LI Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015: 22-25 (in Chinese). | |
32 | 王继明, 刘亦鹏. 民机风洞试验半模垫板高度对气动特性的影响[J]. 航空学报, 2017, 38(5): 120429. |
WANG J M, LIU Y P. Effects of half model peniche height on civil aircraft aerodynamic characteristics in wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120429 (in Chinese). | |
33 | 刘义信,刘国强,刘晓辉,等. 航空航天器低速风洞测力试验方法: [S]. 北京: 中国人民解放军总装备部,2002. |
LIU Y X, LIU G Q, LIU X H, et al. Test method for aerodynamic force measurement of aero-space craft model in low speed wind tunnel: [S]. Beijing: The General Reserve Department of PLA, 2002 (in Chinese). | |
34 | KERHO M F. Effect of large distributed roughness near an airfoil leading edge on boundary-layer development and transition[D]. Urbana: University of Illinois, 1995. |
35 | CUMMINGS M J. Airfoil boundary-layer transition due to large isolated 3-D roughness elements in a favorable pressure gradient[D]. Urbana: University of Illinois, 1995. |
36 | 小约翰·D . 安德森. 空气动力学基础[M]. 杨永,宋文萍,张正科,等,译. 北京:航空工业出版社,2014: 1020-1021. |
ANDERSON J D. Fundamentals of aerodynamics[M]. YANG Y, SONG W P, ZHANG Z K, et al, translated. Beijing: Aviation Industry Press, 2014: 1020-1021 (in Chinese). |
[1] | 孙大智, 陈希, 鲍为成, 卞威, 招启军. 高速直升机机身干扰对推力桨气动与噪声源特性的影响[J]. 航空学报, 2024, 45(9): 529142-529142. |
[2] | 孙朋朋, 刘平安, 樊枫, 曾伟. 悬停状态共轴刚性旋翼机身气动干扰特性[J]. 航空学报, 2024, 45(9): 529284-529284. |
[3] | 王畅, 何龙, 徐栋霞, 唐敏, 马率, 吴希明. 共轴刚性旋翼桨毂流动控制减阻研究[J]. 航空学报, 2024, 45(9): 529084-529084. |
[4] | 张卫国, 唐敏, 武杰, 彭先敏, 章贵川, 聂博文, 王亮权, 李超群. 倾转旋翼机风洞试验综述[J]. 航空学报, 2024, 45(9): 530114-530114. |
[5] | 聂博文, 王亮权, 黄志银, 何龙, 杨仕鹏, 颜鸿涛, 章贵川. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848-529848. |
[6] | 刘柳, 向先宏, 张宇飞, 陈海昕, 魏闯, 朱剑, 杨普. 一种高升阻比非常规翼身融合燕尾气动布局[J]. 航空学报, 2024, 45(6): 629630-629630. |
[7] | 李学良, 李创创, 苏伟, 吴杰. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627-128627. |
[8] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[9] | 刘宇, 秦梦婕, 王强, 易贤. 含盐海水飞沫的结冰风洞试验相似准则[J]. 航空学报, 2023, 44(S2): 729297-729297. |
[10] | 杨秋明, 朱永峰, 陈华伟, 刘晓林. 镂空图案化电加热组件防冰性能试验研究[J]. 航空学报, 2023, 44(S2): 729334-729334. |
[11] | 曾繁宇, 邱云龙, 曹占伟, 张伦, 陈伟芳. 超声速湍流边界层阵列式微吹气流动控制与减阻特性[J]. 航空学报, 2023, 44(S2): 729396-729396. |
[12] | 高世琦, 丁博, 解旭祯, 李铮, 陈林, 钱首元, 焦子涵, 白光辉. 等离子体激励在高速流动中的减阻机制[J]. 航空学报, 2023, 44(S2): 729373-729373. |
[13] | 许岭松, 吴渊, 朱东宇, 张付昆, 刘昱. FL⁃61结冰风洞翼型俯仰振荡机构研制[J]. 航空学报, 2023, 44(S2): 729296-729296. |
[14] | 常思源, 肖尧, 李广利, 田中伟, 张凯凯, 崔凯. 翼反角对高压捕获翼构型高超气动特性的影响[J]. 航空学报, 2023, 44(8): 127349-127349. |
[15] | 金毅, 孙姝, 郭赟杰, 谭慧俊, 张悦. 超声速可调进气道内流双解现象及其节流特性[J]. 航空学报, 2023, 44(7): 127134-127134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学