收稿日期:
2023-03-02
修回日期:
2023-04-03
接受日期:
2023-04-17
出版日期:
2024-01-25
发布日期:
2023-04-21
通讯作者:
王科雷
E-mail:craig-wang@nwpu.edu.cn
基金资助:
Kelei WANG(), Zhou ZHOU, Jiahao GUO, Minghao LI
Received:
2023-03-02
Revised:
2023-04-03
Accepted:
2023-04-17
Online:
2024-01-25
Published:
2023-04-21
Contact:
Kelei WANG
E-mail:craig-wang@nwpu.edu.cn
Supported by:
摘要:
以分布式混合电推进飞行器技术研究为背景,针对分布式动力翼在前飞状态下动力/气动耦合特性开展数值模拟及分析。首先,通过对分布式动力翼各部件进行合理拆解,结合超椭圆方程、四阶Bezier曲线、CST (Class Function/Shape Function Transformation)参数化方法等构建了分布式动力翼复杂对象的参数化模型。然后,依次对动力翼二维剖面翼型、动力翼单元翼段、分布式动力翼整体动力/气动耦合特性进行了数值研究,并与常规翼型-机翼进行了对比分析。最后,梳理了分布式动力翼内外流耦合与其二维-单元-整体特性之间的内在联系,提出了关于分布式动力翼动力/气动耦合设计思路的建议。
中图分类号:
王科雷, 周洲, 郭佳豪, 李明浩. 分布式动力翼前飞状态动力/气动耦合特性[J]. 航空学报, 2024, 45(2): 128643-128643.
Kelei WANG, Zhou ZHOU, Jiahao GUO, Minghao LI. Propulsive/aerodynamic coupled characteristics of distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128643-128643.
表 1
分布式动力翼模型参数定义
部件 | 变量 | 含义 |
---|---|---|
全模型 | c=lin+lhd+lout | 弦长 |
b=12bin=12bout | 展长 | |
AR=b/c | 展弦比 | |
进气道 | bin | “方-圆”进气道进口宽度 |
hin | “方-圆”进气道进口高度 | |
lin | “方-圆”进气道长度 | |
p2、p3、p8、p9、p13、p14、p18、p19 | “方-圆”进气道曲面控制变量 | |
排气道 | bout | “圆-方”排气道出口宽度 |
hout | “圆-方”排气道出口高度 | |
lout | “圆-方”排气道长度 | |
“圆-方”排气道曲面控制变量 | ||
动力翼外翼面 | Aui (i=0, 1, …, 6) | 上表面控制变量 |
Ali (i=0, 1, …, 6) | 下表面控制变量 | |
yTu | 上表面后缘y坐标 | |
yTl | 下表面后缘y坐标 | |
转动部件 | R | 涵道筒半径 |
lhd | 涵道筒长度 |
表 2
各计算模型控制参数取值
DPW计算模型 | 部件 | 变量取值 |
---|---|---|
base | 全模型 | c=0.2 m, b=2.04 m, AR=10.2 |
进气道 | bin=0.17 m, hin=0.17 m, lin=0.08 m, p2=0、p3=1.00、p8=0.08、p9=0.16、p13=0、p14=0、p18=0.10、p19=0.20 | |
排气道 | bout=0.17 m, hout=0.17 m,lout=0.08 m, | |
动力翼外翼面 | Au0=Au1=Au2=Au3=Au4=Au5=Au6=+0.20, Al0=Al1=Al2=Al3=Al4=Al5=Al6=-0.20, yTu=0.001 m,yTl=-0.001 m | |
转动部件 | R=0.075 m, lhd=0.04 m | |
pc01 | 动力翼外翼面 | Au0=Au1=Au2=Au3=Au4=Au5=Au6=+0.25, Al0=Al1=Al2=Al3=Al4=Al5=Al6=-0.15 |
pc02 | 动力翼外翼面 | Au0=Au1=Au2=Au3=Au4=Au5=Au6=+0.30, Al0=Al1=Al2=Al3=Al4=Al5=Al6=-0.10 |
1 | WELLS D. NASA green flight challenge: Conceptual design approaches and technologies to enable 200 passenger miles per gallon[C]∥ 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011. |
2 | 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
3 | KIM H, BROWN G, FELDER J. Distributed turboelectric propulsion for hybrid wing body aircraft[C]∥ Proceedings of 2008 International Powered Lift Conference. London: Royal Aeronautical Society, 2008. |
4 | 田伟. 全电飞机发展综述[C]∥ 2016年IEEE中文制导、导航与控制会议论文集. 北京: 中国航空学会, 2016: 3128-3131. |
TIAN W. Review of more-electric aircrafts[C]∥ Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2016: 3128-3131 (in Chinese). | |
5 | GREITZER E M, BONNEFOY P A, DELA B E, et al. N+3 aircraft concept designs and trade studies Volume 1: NASA/CR—2010-216794 [R]. Washington,D.C.: NASA, 2010. |
6 | RIGHI H. Hybrid electric aircraft[D]. Mississippi: Mississippi State University, 2016: 1-21. |
7 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 41-57. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 41-57 (in Chinese). | |
8 | 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 025556. |
KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 025556 (in Chinese). | |
9 | MOORE M D, FREDERICKS B. Misconceptions of electric propulsion aircraft and their emergent aviation markets [C]∥ 52nd Aerospace Science Meeting. Reston: AIAA, 2014. |
10 | PATTERSON M. Conceptual design of high-lift propeller systems for small electric aircraft[D]. Atlanta: Georgia Institute of Technology, 2016. |
11 | 王科雷, 周洲, 祝小平, 等. 低雷诺数多螺旋桨/机翼耦合气动设计[J]. 航空学报, 2018, 39(8): 121918. |
WANG K L, ZHOU Z, ZHU X P, et al. Multi-propeller/wing coupled aerodynamic design at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 121918 (in Chinese). | |
12 | WANG K L, ZHOU Z, ZHU X P, et al. Aerodynamic design of multi-propeller/wing integration at low Reynolds numbers [J]. Aerospace Science and Technology, 2019, 84: 1-17. |
13 | 王科雷, 周洲, 祝小平, 等. 基于气动载荷分布的螺旋桨诱导流场重构设计[J]. 航空学报, 2020, 41(1): 123118. |
WANG K L, ZHOU Z, ZHU X P, et al. Reconstruction design of propeller induced flow-field based on aerodynamic loading distributions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123118 (in Chinese). | |
14 | WANG K L, ZHOU Z, FAN Z Y, et al. Aerodynamic design of tractor propeller for high-performance distributed electric propulsion aircraft [J]. Chinese Journal of Aeronautics, 2021, 34(10): 20-35. |
15 | GRAY R, WRIGHT T. Determination of the design parameters for optimum heavily loaded ducted fans[C]∥VTOL Research, Design, and Operations Meeting. Reston: AIAA, 1969. |
16 | MENDENHALL M R, Spangler S B. Theoretical study of ducted fan performance: NASA CR-1494[R]. Washington, D.C.: NASA, 1970. |
17 | 许和勇, 叶正寅. 基于非结构嵌套网格的涵道螺旋桨数值模拟[J]. 空气动力学学报, 2013, 31(3): 306-309. |
XU H Y, YE Z Y. Numerical simulation of ducted-propeller system using unstructured overset grids[J]. Acta Aerodynamica Sinica, 2013, 31(3): 306-309 (in Chinese). | |
18 | 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006. |
LIU P Q. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006 (in Chinese). | |
19 | STUBBLEFIELD J M. Numerically-based ducted propeller design using vortex lattice lifting line theory[D]. Cambridge: Massachusetts Institute of Technology, 2008. |
20 | 郭佳豪, 周洲, 李旭. 对转涵道风扇桨叶高效设计方法[J]. 航空动力学报, 2022, 37(9): 1835-1845. |
GUO J H, ZHOU Z, LI X. Efficient design method for blades of counter-rotating ducted fan[J]. Journal of Aerospace Power, 2022, 37(9): 1835-1845 (in Chinese). | |
21 | 许和勇, 叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报, 2011, 26(12): 2820-2825. |
XU H Y, YE Z Y. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power, 2011, 26(12): 2820-2825 (in Chinese). | |
22 | 杨磊, 叶正寅. 基于模糊逻辑方法的涵道风扇飞行器非定常气动力建模及应用[J]. 西北工业大学学报, 2014, 32(6): 849-856. |
YANG L, YE Z Y. Unsteady aerodynamics modeling and application of the ducted fan UAV based on fuzzy logic method[J]. Journal of Northwestern Polytechnical University, 2014, 32(6): 849-856 (in Chinese). | |
23 | DIGHE V V, AVALLONE F, IGRA O, et al. Multi-element ducts for ducted wind turbines: A numerical study[J]. Wind Energy Science, 2019, 4: 439-449. |
24 | BENTO H F, VRIES R D, VELDHUIS L L. Aerodynamic performance and interaction effects of circular and square ducted propellers[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
25 | 孙蓬勃, 周洲, 郭佳豪. 不同形状涵道风扇推进特性数值分析[J]. 航空动力学报, 2022, 37(12): 2736-2748. |
SUN P B, ZHOU Z, GUO J H. Numerical analysis for propulsion characteristics of ducted fans in different shapes[J]. Journal of Aerospace Power, 2022, 37(12): 2736-2748 (in Chinese). | |
26 | PERRY A T, ANSELL P J, KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft, 2018, 55(6): 2414-2426. |
27 | PIEPER K, PERRY A T, ANSELL P J, et al. Design and development of a dynamically, scaled distributed electric propulsion aircraft testbed[C]∥ 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston: AIAA, 2018. |
28 | YU D, ANSELL P J, HRISTOV G. Aero-propulsive integration effects of an overwing distributed electric propulsion system[C]∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
29 | 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报, 2021, 42(9): 224977. |
ZHANG Y, ZHOU Z, GUO J H. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224977 (in Chinese). | |
30 | 张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报, 2022, 43(8): 125389. |
ZHANG X Y, GAO Z H, LEI T, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125389 (in Chinese). | |
31 | 王海童, 王掩刚, 周芳, 等. 基于面元法的分布式涵道推进系统进气道优化设计[J]. 推进技术, 2021, 42(11): 2465-2473. |
WANG H T, WANG Y G, ZHOU F, et al. Optimization design of inlet for distributed ducted fan propulsion system based on panel method[J]. Journal of Propulsion Technology, 2021, 42(11): 2465-2473 (in Chinese). | |
32 | GUO J H, ZHOU Z. Multi-objective design of a distributed ducted fan system[J]. Aerospace, 2022, 9(3): 165-186. |
33 | WANG K L, ZHOU Z. Aerodynamic design, analysis and validation of a small blended-wing-body unmanned aerial vehicle[J]. Aerospace, 2022, 9(1): 36-54. |
34 | 李岳锋, 杨青真, 孙志强. 超椭圆 S 形进气道的设计及气动性能研究[J]. 计算机仿真, 2011, 28(3): 82-85, 96. |
LI Y F, YANG Q Z, SUN Z Q. Designof super-elliptic S-shaped inlet and analysis of aerodynamic performance[J]. Computer Simulation, 2011, 28(3): 82-85, 96 (in Chinese). | |
35 | 齐旻, 王占学, 周莉, 等. 唇口几何参数对短舱进气道性能影响数值研究[J]. 推进技术, 2020, 41(9): 2021-2030. |
QI M, WANG Z X, ZHOU L, et al. Numerical study on effects of lip geometric parameters on performance of nacelle inlet[J]. Journal of Propulsion Technology, 2020, 41(9): 2021-2030 (in Chinese). | |
36 | 芦殿军. Bezier曲线的拼接及其连续性[J]. 青海大学学报(自然科学版), 2004, 22(6): 84-86. |
LU D J. Connection and continuity of the Bezier curve[J]. Journal of Qinghai University(Natural Science), 2004, 22(6): 84-86 (in Chinese). | |
37 | KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. |
38 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
39 | 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4): 554-562. |
CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4): 554-562 (in Chinese). |
[1] | 孙蓬勃, 周洲, 李旭, 王科雷. 目标气动特性下动力翼参数影响分析与优化[J]. 航空学报, 2024, 45(6): 629368-629368. |
[2] | 赵清风, 周洲, 李明浩, 徐德. 分布式动力翼-诱导翼面推进-气动耦合模型[J]. 航空学报, 2024, 45(10): 129252-129252. |
[3] | 彭沛, 赵永平, 王雨玮. 一种快速自动挖掘航空发动机工作模式的新方法[J]. 航空学报, 2023, 44(11): 327659-327659. |
[4] | 雷涛, 孔德林, 王润龙, 李伟林, 张晓斌. 分布式电推进飞机动力系统评估优化方法[J]. 航空学报, 2021, 42(6): 624047-624047. |
[5] | 马奕扬, 招启军. 后缘小翼对旋翼气动特性的控制机理及参数分析[J]. 航空学报, 2018, 39(5): 121671-121671. |
[6] | 马砾, 招启军, 赵蒙蒙, 王博. 基于CFD/CSD耦合方法的旋翼气动弹性载荷计算分析[J]. 航空学报, 2017, 38(6): 120762-120762. |
[7] | 田永亮;刘虎;罗明强;武哲. 参数化大型客机方案实例库研究[J]. 航空学报, 2010, 31(11): 2202-2208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学