航空学报 > 2017, Vol. 38 Issue (11): 421258-421258   doi: 10.7527/S1000-6893.2017.421258

筒状复合材料制件热压罐成型温度模拟及影响因素分析

向炳东1, 李敏1, 李艳霞1, 顾轶卓1, 张佐光1, 李健芳2, 李桂洋2   

  1. 1. 北京航空航天大学 材料科学与工程学院, 北京 100083;
    2. 航天材料及工艺研究所, 北京 100076
  • 收稿日期:2017-03-20 修回日期:2017-05-27 出版日期:2017-11-15 发布日期:2017-05-27
  • 通讯作者: 李艳霞 E-mail:liyanxia@buaa.edu.cn

Numerical simulation and parameter analysis of temperature distribution of autoclave cured composite cylindrical structure

XIANG Bingdong1, LI Min1, LI Yanxia1, GU Yizhuo1, ZHANG Zuoguang1, LI Jianfang2, LI Guiyang2   

  1. 1. School of Materials Science and Engineering, Beihang University, Beijing 100083, China;
    2. Aerospace Research Institute of Material & Processing Technology, Beijing 100076, China
  • Received:2017-03-20 Revised:2017-05-27 Online:2017-11-15 Published:2017-05-27

摘要:

筒状结构是航天飞行器的典型结构形式之一,其在热压罐成型工艺过程中多采用圆筒结构径向平面垂直于热压罐径向平面的放置方式,在其成型过程中筒状结构的迎风面、背风面、侧风面等可能会存在较大的温度分布不均匀现象,针对该问题,基于Fluent软件建立了考虑树脂固化反应放热的温度场分析方法,并选取圆筒结构典型位置的温度变化历程对仿真结果的有效性进行了验证,并且分析了圆筒结构的温度场分布特性。在此基础上,改变热压罐的升温速率,分析了圆筒制件内温度和固化度的分布变化规律。结果表明:对于圆筒结构热压罐成型过程,因为结构特性而带来的温度差异远远大于因传热引起的温度差异;热压罐升温速率从0.5 K/min上升至5 K/min,圆筒制件迎风面与背风面温度差值最大值仅增大1.1 K,最大固化度差值仅增加2.08%,热压罐升温速率对圆筒结构温度场与固化度均匀性影响不大。研究结果对实际生产中圆筒结构的热压罐固化成型工艺优化有一定的指导意义。

关键词: 复合材料热压罐成型工艺, 圆筒结构, 数值模拟, 温度分布, 固化度分布

Abstract:

The cylindrical structure is one of the most common structural form in spacecraft. During the autoclave process, the cylindrical parts are often arranged radially perpendicular to the radial direction of the autoclave, leading to uneven distribution of temperature in the cylindrical part. In this paper, a numerical simulation method is developed based on the software Fluent to predict distribution of temperature and curing degree in the cylindrical part during the autoclave process. The effectiveness of the simulation method is verified by comparing the results of experimental data and simulated data. Based on the simulated data, the effects of heating rate on the distribution of the temperature and curing degree in the cylindrical structure are analyzed. The final results show that the temperature difference caused by the structural characteristics is greater than that by heat transfer during the autoclave process of the cylindrical part. When the heating rate autoclave grows from 0.5 K/min to 5 K/min, the maximum differences between the windward and leeward in temperature and curing degree increase by 1.1 K and 2.08% respectively, indicating that heating rate does not have a significant influence on temperature and curing degree distribution. These results are helpful for the optimization of cylindrical structures during autoclave process.

Key words: composite autoclave molding, cylindrical structure, numerical simulation, temperature distribution, curing degree distribution

中图分类号: