1 |
刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878.
|
|
LIU X Y, WANG M F, LIU J W, et al. Review and prospect of research on scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878 (in Chinese).
|
2 |
LIU Q L, BACCARELLA D, MCGANN B, et al. Cavity-enhanced combustion stability in an axisymmetric scramjet model[J]. AIAA Journal, 2019, 57(9): 3898-3909.
|
3 |
ABDULRAHMAN G A Q, QASEM N A A, IMTEYAZ B, et al. A review of aircraft subsonic and supersonic combustors[J]. Aerospace Science and Technology, 2023, 132: 108067.
|
4 |
LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636.
|
5 |
CHOUBEY G, DEVARAJAN Y, HUANG W, et al. Recent advances in cavity-based scramjet engine: A brief review[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13895-13909.
|
6 |
陈军, 白菡尘, 万冰, 等. 双模态冲压发动机: 从宽域性能优化到模态设计[J]. 航空学报, 2024, 45(11): 529781.
|
|
CHEN J, BAI H C, WAN B, et al. Dual-mode scramjet: From performance optimization to mode-design[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529781 (in Chinese).
|
7 |
BAO W, YANG Q C, CHANG J T, et al. Dynamic characteristics of combustion mode transitions in a strut-based scramjet combustor model[J]. Journal of Propulsion and Power, 2013, 29(5): 1244-1248.
|
8 |
连欢, 顾洪斌, 周芮旭, 等. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学, 2021, 35(1): 97-108.
|
|
LIAN H, GU H B, ZHOU R X, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108 (in Chinese).
|
9 |
肖保国, 李莉, 张顺平, 等. 超燃冲压发动机燃烧模态转换直连式实验研究[J]. 推进技术, 2019, 40(2): 339-346.
|
|
XIAO B G, LI L, ZHANG S P, et al. Direct-connect experimental investigation of combustion mode transition for scramjet engine[J]. Journal of Propulsion Technology, 2019, 40(2): 339-346 (in Chinese).
|
10 |
WANG H B, WANG Z G, SUN M B, et al. Large eddy simulation based studies of jet-cavity interactions in a supersonic flow[J]. Acta Astronautica, 2014, 93: 182-192.
|
11 |
LIN K C, TAM C J, BOXX I, et al. Flame characteristics and fuel entrainment inside a cavity flame holder of a scramjet combustor: AIAA-2007-5381[R]. Reston: AIAA, 2007: 5381.
|
12 |
WANG H B, WANG Z G, SUN M B, et al. Combustion characteristics in a supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2073-2082.
|
13 |
GRUBER M R, DONBAR J M, CARTER C D, et al. Mixing and combustion studies using cavity-based flameholders in a supersonic flow[J]. Journal of Propulsion and Power, 2004, 20(5): 769-778.
|
14 |
TIAN Y, GUO M M, RAN W, et al. Experimental investigation of effects of pulsed injection on flow structure and flame development in a kerosene-fueled scramjet with pilot hydrogen[J]. Physics of Fluids, 2022, 34(5): 055109.
|
15 |
TIAN Y, SHI W, GUO M M, et al. Investigation of combustion characteristics in a hydrogen-fueled scramjet combustor[J]. Acta Astronautica, 2021, 186: 486-495.
|
16 |
MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404.
|
17 |
LUO F T, SONG W Y, ZHANG Z Q, et al. Experimental and numerical studies of vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Chinese Journal of Aeronautics, 2012, 25(2): 164-172.
|
18 |
WANG Y H, SONG W Y, FU Q, et al. Experimental study of vitiation effects on hydrogen/kerosene fueled supersonic combustor[J]. Aerospace Science and Technology, 2017, 60: 108-114.
|
19 |
TATMAN B J, ROCKWELL R D, GOYNE C P, et al. Experimental study of vitiation effects on flameholding in a cavity flameholder[J]. Journal of Propulsion and Power, 2013, 29(2): 417-423.
|
20 |
DU G M, TIAN Y, LE J L, et al. Experimental investigation of effects of dual-cavity configuration on ignition and flame stabilization in a kerosene-fueled supersonic combustor[J]. Physics of Fluids, 2023, 35(1): 015138.
|
21 |
SHI D Y, SONG W Y, WANG Y H, et al. Effects of cavity configurations on flameholding and performances of kerosene fueled scramjet combustor[J]. International Journal of Turbo and Jet Engines, 2017, 34(3): 211-220.
|
22 |
LI F, SUN M B, CAI Z, et al. Experimental study of flame stabilization in a single-side expansion scramjet combustor with different cavity length-to-depth ratios[J]. Acta Astronautica, 2020, 173: 1-8.
|
23 |
MAHTO N K, CHOUBEY G, SUNEETHA L, et al. Effect of variation of length-to-depth ratio and Mach number on the performance of a typical double cavity scramjet combustor[J]. Acta Astronautica, 2016, 128: 540-550.
|
24 |
YANG Y X, WANG Z G, ZHANG Y X, et al. Flame stabilization with a rear-wall-expansion cavity in a supersonic combustor[J]. Acta Astronautica, 2018, 152: 752-756.
|
25 |
LIU Q L, BACCARELLA D, LEE T H, et al. Influences of inlet geometry modification on scramjet flow and combustion dynamics[J]. Journal of Propulsion and Power, 2017, 33(5): 1179-1186.
|
26 |
ZHANG L, LIANG J H, SUN M B, et al. Experimental investigation of combustion stabilization modes in a cavity-based supersonic combustor with different wall divergence angles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(10): 1853-1863.
|
27 |
LI F, LI F, LIU X, et al. Combustion modes of kerosene spray in a supersonic combustor[J]. Physics of Fluids, 2023, 35(10): 106103.
|
28 |
WANG T Y, WANG Z G, CAI Z, et al. Combustion characteristics in scramjet combustor operating at different inflow stagnation pressures[J]. AIAA Journal, 2022, 60(8): 4544-4565.
|
29 |
LI F, ZHAO G Y, HUANG Y H, et al. Effect of boundary layer thickness on supersonic combustion in a scramjet combustor[J]. Aerospace Science and Technology, 2023, 139: 108380.
|