[1] MCCLINTON C R, RAUSCH V L, NGUYEN L T, et al. Preliminary X-43 flight test results[J]. Acta Astronautica, 2005, 57(2-8):266-276. [2] MARSHALL L, BAHM C, CORPENING G, et al. Overview with results and lessons learned of the X-43A Mach 10 flight:AIAA-2005-3336[R]. Reston:AIAA,2005. [3] MARSHALL L, CORPENING G, SHERRILL R. A chief engineer's view of the NASA X-43A scramjet flight test:AIAA-2005-3332[R]. Reston:AIAA, 2005. [4] URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50:593-627. [5] SELEZNEV R K. History of scramjet propulsion development[C]//11th International Conference Aerophysics and Physical Mechanics of Classical and Quantum Systems. Bristol:IOP Publishing Ltd, 2018. [6] 曾慧, 白菡尘, 朱涛. X-51A超燃冲压发动机及飞行验证计划[J]. 导弹与航天运载技术, 2010(1):57-61. ZENG H, BAI H C, ZHU T. X-51A scramjet engine flight and demonstration program[J]. Missiles and Space Vehicles, 2010(1):57-61(in Chinese). [7] ZHAO X, XIA Z X, MA L K, et al. Research progress on solid-fueled scramjet[J]. Chinese Journal of Aeronautics, 2022, 35(1):398-415. [8] SALGANSKY E A, LUTSENKO N A, LEVIN V A, et al. Modeling of solid fuel gasification in combined charge of low-temperature gas generator for high-speed ramjet engine[J]. Aerospace Science and Technology, 2019, 84:31-36. [9] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10):1929-1953. [10] SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences, 2019, 106:43-70. [11] 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京:科学出版社, 2012. CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing:Science Press, 2012(in Chinese). [12] LV Z, XIA Z, LIU B, et al. Preliminary experimental study on solid-fuel rocket scramjet combustor[J]. Journal of Zhejiang University-Science A, 2017, 18:106-112. [13] 吕仲, 夏智勋, 刘冰, 等. 采用固体燃料的超燃冲压发动机研究进展[J]. 航空动力学报, 2016, 31(8):1973-1984. Lü Z, XIA Z X, LIU B, et al. Review of research on solid fuel scramjet engine[J]. Journal of Aerospace Power, 2016, 31(8):1973-1984(in Chinese). [14] LV Z, XIA Z X, LIU B, et al. Experimental and numerical investigation of a solid-fuel rocket scramjet combustor[J]. Journal of Propulsion and Power, 2015, 32(2):273-278. [15] 刘仔, 陈林泉, 褚佑彪, 等. 燃气喷射方式对固体火箭超燃冲压发动机性能的影响[J]. 固体火箭技术, 2018, 41(6):710-714. LIU Z, CHEN L Q, CHU Y B, et al. Effect of gas injection way on the solid-rocket scramjet performance[J]. Journal of Solid Rocket Technology, 2018, 41(6):710-714(in Chinese). [16] 赵翔, 夏智勋, 马立坤, 等. 固体火箭超燃冲压发动机地面直连试验[J]. 航空兵器, 2018, 25(4):57-61. ZHAO X, XIA Z X, MA L K, et al. Direct-connected ground test of solid-fuel rocket scramjet[J]. Aero Weaponry, 2018, 25(4):57-61(in Chinese). [17] LIU Y, GAO Y G, SHI L, et al. Preliminary experimental study on solid rocket fuel gas scramjet[J]. Acta Astronautica, 2018, 153:146-153. [18] LI C L, ZHAO X, XIA Z X, et al. Influence of the vortex generator on the performance of solid rocket scramjet combustor[J]. Acta Astronautica, 2019, 164:174-183. [19] LIU J, WANG N F, WANG J, et al. Optimizing combustion performance in a solid rocket scramjet engine[J]. Aerospace Science and Technology, 2020, 99:105560. [20] LI C L, XIA Z X, MA L K, et al. Experimental and numerical study of solid rocket scramjet combustor equipped with combined cavity and strut device[J]. Acta Astronautica, 2019, 162:145-154. [21] LI C L, XIA Z X, MA L K, et al. Performance evaluation for scramjet based on ground direct-connected test:A method investigation[J]. Aerospace Science and Technology, 2021, 117:106895. [22] BEN-YAKAR A, NATAN B, GANY A. Investigation of a solid fuel scramjet combustor[J]. Journal of Propulsion and Power, 1998, 14(4):447-455. [23] GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1:Analysis:NASA-RP-1311[R]. Washington,D.C.:NASA, 1994. [24] GUGULOTHU S K, NUTAKKI P K. Dynamic fluid flow characteristics in the hydrogen-fuelled scramjet combustor with transverse fuel injection[J]. Case Studies in Thermal Engineering, 2019, 14:100448. [25] HUANG W. Transverse jet in supersonic crossflows[J]. Aerospace Science and Technology, 2016, 50:183-195. [26] SHARMA V, ESWARAN V, CHAKRABORTY D. Effect of fuel-jet injection angle variation on the overall performance of a SCRAMJET engine[J]. Aerospace Science and Technology, 2020, 100:105786. [27] 林森, 沈赤兵, 肖锋, 等. 超声速气流中液体横向脉冲射流一次破碎的大涡模拟[J]. 燃烧科学与技术, 2020, 26(1):87-95. LIN S, SHEN C B, XIAO F, et al. Large eddy simulation of primary breakup of transverse pulsed liquid jet in supersonic flow[J]. Journal of Combustion Science and Technology, 2020, 26(1):87-95(in Chinese). [28] CHOUBEY G, YUVARAJAN D, HUANG W, et al. Recent research progress on transverse injection technique for scramjet applications-a brief review[J]. International Journal of Hydrogen Energy, 2020, 45(51):27806-27827. [29] 陈斌斌, 夏智勋, 黄利亚, 等. 含硼固冲补燃室燃烧组织技术进展[J]. 航空兵器, 2018, 25(4):3-20. CHEN B B, XIA Z X, HUANG L Y, et al. Review on combustion technology of boron-based solid ramjet afterburning chamber[J]. Aero Weaponry, 2018, 25(4):3-20(in Chinese). [30] LIANG D L, LIU J Z, ZHOU Y N, et al. Ignition delay kinetic model of boron particle based on bidirectional diffusion mechanism[J]. Aerospace Science and Technology, 2018, 73:78-84. [31] AO W, WANG Y, WU S X. Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics[J]. Acta Astronautica, 2017, 136:450-458. [32] 王德全, 夏智勋, 胡建新. 固冲发动机补燃室凝相碳颗粒燃烧研究[J]. 国防科技大学学报, 2010, 32(3):37-41. WANG D Q, XIA Z X, HU J X. Combustion study of condensed carbon particle in the secondary combustion chamber of solid rocket ramjet[J]. Journal of National University of Defense Technology, 2010, 32(3):37-41(in Chinese). [33] BESHTY B S. A mathematical model for the combustion of a porous carbon particle[J]. Combustion and Flame, 1978, 32:295-311. [34] 吕仲. 固体火箭超燃冲压发动机工作特性研究[D]. 长沙:国防科技大学, 2012. LV Z. Investigation on operating characteristics of solid-fuel rocket scramjet engine[D]. Changsha:National University of Defense Technology, 2012(in Chinese). |