首页 >

脉冲表面电弧放电对高超声速压缩拐角非定常控制机理研究

丁博1,陈真利1,焦子涵2,王锦程3,李铮4,白光辉5   

  1. 1. 西北工业大学
    2. 空间物理重点实验室
    3. 中国运载火箭技术研究院空间物理实验室
    4. 中国运载火箭技术研究院
    5. 北京临近空间飞行器系统工程研究所
  • 收稿日期:2022-07-01 修回日期:2022-09-17 出版日期:2022-09-22 发布日期:2022-09-22
  • 通讯作者: 陈真利

Mechanism analysis of near surface DC arc discharge on the unsteady control of hypersonic compression corner

  • Received:2022-07-01 Revised:2022-09-17 Online:2022-09-22 Published:2022-09-22

摘要: 近年较多实验研究结果表明脉冲表面电弧放电等离子体对高超声速流动中激波位置和激波/边界层干扰有较好的控制能力。由于短放电时间、强电磁干扰和有限的放电区域,使得实验定量测量非常困难,多数实验仅获得了定性的纹影实验结果。为揭示脉冲表面电弧放电等离子体高超声速流动非定常控制机理,需要建立表面电弧放电等离子体与高超声速流动相互作用数值模拟方法。本文采用数值模拟和实验相结合的方法研究了脉冲表面电弧放电等离子体对高超声速压缩拐角流动的非定常控制机理。在理论分析和实验的基础上,建立了脉冲表面电弧放电唯象学模型,即将电弧放电产生的焦耳热作为空间功率密度源项添加到能量方程中,模拟脉冲表面电弧放电等离子体与高超声速压缩拐角流动之间的相互作用。与实验结果对比分析表明,不同时刻数值模拟纹影与实验纹影吻合,能较准确模拟电弧丝与流动之间的相互作用过程,验证了唯象学模型的正确性。非定常数值模拟结果揭示了电弧放电等离子体与双楔高超声速流动相互作用机理:表面电弧放电产生的局部焦耳热诱导形成近壁分离区,导致局部位移厚度增加,形成沿壁面移动的非定常虚拟楔,从而产生激波角随时间变化的斜激波,并与前楔激波之间形成包括激波反射在内的非定常激波/激波相互作用。放电形成的热气体团对后楔斜激波具有明显调控能力。在单脉冲放电控制过程中,最大减阻量约2%,最大俯仰力矩变化量约3%。

关键词: 表面电弧放电, 等离子体流动控制, 高超声速流动, 唯象学模型, 数值模拟

Abstract: Recently, a large number of experimental results indicate that the pulsed surface arc discharge plasma has a good ability to control the shock position and shock wave/boundary layer interaction (SWBLI) in the hypersonic flows. Be-cause of the short discharge time, strong electromagnetic interference and limited discharge area, it’s very difficult to obtain quantitative experimental data. In the most of experiments only qualitative Schlieren images were obtained. In order to reveal the unsteady control mechanism of pulsed surface arc discharge plasma, it’s necessary to establish a numerical simulation method for the interactions between the surface arc discharge plasma and the hypersonic flows. In present work, the unsteady control mechanism of pulsed surface arc discharge plasma on hypersonic compression corner flow is studied by using numerical and experimental methods. Based on the theoretical analysis and experi-mental results, a three-dimensional phenomenological model of the pulsed surface arc discharge is established. Joule-heating generated by arc discharge is added to the energy equation as a spatial power density source term to simulate the interaction between the surface arc discharge plasma and the hypersonic compression corner flow. The numerical Schlieren images at different times were predicted well compared with that of experiment, which verifies the correctness of the phenomenological model. The unsteady numerical results reveal the interaction mechanism be-tween the arc discharge plasma and the double wedge hypersonic flow. The local Joule-heating generated by the sur-face arc discharge induces the formation of the near-wall separation zone, which leads to the increase of the local displacement thickness and the formation of the unsteady virtual wedge moving along the wall. The moving virtual wedge generates an oblique shock wave with varying strength, which was reflected by with the front wedge shock wave forming an unsteady shock/shock interaction. The thermal gas bulb generated by arc discharge can effectively regulate the oblique shock wave. In a single pulse discharge, the maximum drag reduction is around 2%, and the maximum pitch moment change is around 3%.

Key words: Surface arc discharge, plasma flow control, hypersonic flow, phenomenological model, numerical simulation

中图分类号: