1 |
吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.
|
|
WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese).
|
2 |
MOREAU E, TOUCHARD G. Enhancing the mechanical efficiency of electric wind in corona discharges[J]. Journal of Electrostatics, 2008, 66(1-2): 39-44.
|
3 |
MESTIRI R, HADAJI R, NASRALLAH S BEN. An experimental study of a plasma actuator in absence of free airflow: Ionic wind velocity profile[J]. Physics of Plasmas, 2010, 17(8): 083503.
|
4 |
COLAS D F, FERRET A, PAI D Z, et al. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure[J]. Journal of Applied Physics, 2010, 108(10): 103306.
|
5 |
BENARD N, MOREAU E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control[J]. Experiments in Fluids, 2014, 55(11): 1-43.
|
6 |
LEONOV S B, ADAMOVICH I V, SOLOVIEV V R. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow[J]. Plasma Sources Science and Technology, 2016, 25(6): 063001.
|
7 |
THOMAS F O, CORKE T C, DUONG A, et al. Turbulent drag reduction using pulsed-DC plasma actuation[J]. Journal of Physics D: Applied Physics, 2019, 52(43): 434001.
|
8 |
MHITARYAN A M, LABINOV S D, FRIDLAND V. Some problem of aerodynamics and electro-hydrodynamics[J]. Kievs Institute of Civil Aviation Engineers, 1964, 1(1):221-234.
|
9 |
MACHERET S O, SHNEIDER M N, MILES R B. Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas[J]. AIAA Journal, 2004, 42(7): 1378-1387.
|
10 |
SHIN J, NARAYANASWAMY V, RAJA L, et al. Generation of plasma induced flow actuation by DC glow-like discharge in a supersonic flow[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. 2006: 169.
|
11 |
ANDERSON K, KNIGHT D D. Interaction of heated filaments with a blunt cylinder in supersonic flow[J]. Shock Waves, 2011, 21(2): 149-161.
|
12 |
CHIATTO M, DE LUCA L. Numerical and experimental frequency response of plasma synthetic jet actuators[C]∥55th AIAA Aerospace Sciences Meeting. 2017: 1884.
|
13 |
ZONG H, KOTSONIS M. Formation, evolution and scaling of plasma synthetic jets[J]. Journal of Fluid Mechanics, 2018, 837: 147-181.
|
14 |
陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773.
|
|
CHEN J Z, HU G T, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese).
|
15 |
周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
|
|
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
|
16 |
SAMIMY M, ADAMOVICH I, WEBB B, et al. Development and characterization of plasma actuators for high-speed jet control[J]. Experiments in Fluids, 2004, 37(4): 577-588.
|
17 |
UTKIN Y G, KESHAV S, KIM J H, et al. Development and use of localized arc filament plasma actuators for high-speed flow control[J]. Journal of Physics D: Applied Physics, 2006, 40(3): 685-694.
|
18 |
SAMIMY M, KIM J H, KASTNER J, et al. Active control of high-speed and high-Reynolds-number jets using plasma actuators[J]. Journal of Fluid Mechanics, 2007, 578: 305-330.
|
19 |
SAMIMY M, KIM J H, KEARNEY-FISCHER M, et al. Acoustic and flow fields of an excited high Reynolds number axisymmetric supersonic jet[J]. Journal of Fluid Mechanics, 2010, 656: 507-529.
|
20 |
WEBB N, CLIFFORD C, SAMIMY M. Control of oblique shock wave/boundary layer interactions using plasma actuators[J]. Experiments in fluids, 2013, 54(6): 1-13.
|
21 |
YUGULIS K, HANSFORD S, GREGORY J W, et al. Control of high subsonic cavity flow using plasma actuators[J]. AIAA Journal, 2014, 52(7): 1542-1554.
|
22 |
WEBB N, SAMIMY M. Control of supersonic cavity flow using plasma actuators[J]. AIAA Journal, 2017, 55(10): 3346-3355.
|
23 |
LEONOV S B, YARANTSEV D A. Near-surface electrical discharge in supersonic airflow: properties and flow control[J]. Journal of Propulsion and Power, 2008, 24(6): 1168-1181.
|
24 |
RAIZER Y P, ALLEN J E. Gas discharge physics[M]. Berlin: Springer, 1991.
|
25 |
LEONOV S B, HOUPT A, HEDLUND B, et al. Controllable shock wave generation by near-surface electrical discharge[C]∥47th AIAA Plasmadynamics and Lasers Conference. 2016: 4306.
|
26 |
FALEMPIN F, FIRSOV A A, YARANTSEV D A, et al. Plasma control of shock wave configuration in off-design mode of M= 2 inlet[J]. Experiments in Fluids, 2015, 56(3): 1-10.
|
27 |
WATANABE Y, HOUPT A, LEONOV S B. Plasma-assisted control of supersonic flow over a compression ramp[J]. Aerospace, 2019, 6(35): 1-13.
|
28 |
WATANABE Y, ELLIOTT S, HOUPT A W, et al. Q-DC plasma actuation for Mach-4 supersonic flow control over compression ramp[C]∥AIAA Scitech 2020 Forum. 2020: 1889.
|
29 |
WATANABE Y, LEONOV S B, HOUPT A W. Plasma-based control of Mach-2 supersonic flow over compression ramp[C]∥AIAA Scitech 2019 Forum. 2019: 1348.
|
30 |
WATANABE Y, ELLIOTT S, FIRSOV A, et al. Rapid control of force/momentum on a model ramp by quasi-DC plasma[J]. Journal of Physics D: Applied Physics, 2019, 52(44): 444003.
|
31 |
GAN T, WU Y, SUN Z, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators[J]. Physics of Fluids, 2018, 30(5): 055107.
|
32 |
王宏宇, 杨彦广, 胡伟波, 等. 高频微秒脉冲放电控制激波/边界层干扰非定常性的试验研究[J]. 航空学报, 2022, 43(1):625905.
|
|
WANG H Y, YANG Y G, HU W B, et al. Experimental study on unsteadiness characterizations of shock wave/turbulent boundary layer interaction controlled by high-frequency microsecond pulse discharge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625905 (in Chinese).
|
33 |
TANG M, WU Y, GUO S, et al. Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control[J]. Physics of Fluids, 2020, 32(7): 076104.
|
34 |
TANG M, WU Y, GUO S, et al. Compression ramp shock wave/boundary layer interaction control with high-frequency streamwise pulsed spark discharge array[J]. Physics of Fluids, 2020, 32(12): 121704.
|
35 |
TIAN G, QIONG W. Mechanisms of SWBLI control by using a surface arc plasma actuator array[J]. Experimental Thermal and Fluid Science, 2021, 128: 110428.
|
36 |
LEONOV S, YARANTSEV D, GROMOV V, et al. Mechanisms of flow control by near-surface electrical discharge generation[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 780.
|
37 |
LEONOV S B, YARANTSEV D A. Control of separation phenomena in a high-speed flow by means of the surface electric discharge[J]. Fluid Dynamics, 2008, 43(6): 945-953.
|
38 |
LEONOV S, FIRSOV A, YARANTSEV D, et al. Plasma effect on shocks configuration in compression ramp[C]∥17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2011: 2362.
|
39 |
DESHPANDE A S, POGGIE J. Flow control of swept shock-wave/boundary-layer interaction using plasma actuators[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1198-1207.
|
40 |
SUN Q, CHENG B, YU Y, et al. A study of variation patterns of shock wave control by different plasma aerodynamic actuations[J]. Plasma Science and Technology, 2010, 12(6): 708-714.
|
41 |
SUN Q, LI Y, CHENG B, et al. The characteristics of surface arc plasma and its control effect on supersonic flow[J]. Physics Letters A, 2014, 378(36): 2672-2682.
|
42 |
PARK C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of thermophysics and Heat Transfer, 1989, 3(3): 233-244.
|
43 |
GUPTA R N, YOS J M, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-TM-101528 [R]. 1989.
|
44 |
WATANABE Y, SUZUKI K. Investigation of arc plasma discharge in hypersonic flow over compression and expansion corner[C]∥44th AIAA Plasmadynamics and Lasers Conference. 2013: 3130.
|
45 |
BISEK N J, BOYD I D, POGGIE J. Numerical study of plasma-assisted aerodynamic control for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 568-576.
|
46 |
MACLEAN M, HOLDEN M S, DUFRENE A. Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows[C]∥AIAA Aviation. 2014.
|
47 |
HOUPT A, HEDLUND B, LEONOV S, et al. Quasi-DC electrical discharge characterization in a supersonic flow[J]. Experiments in Fluids, 2017, 58(4): 1-17.
|