首页 >

多级无导叶对转涡轮尾迹/激波转转级间非定常干涉对叶片气动载荷影响的数值研究

朱志豪,隋秀明,浦健,郝龙,赵巍,赵庆军   

  1. 中国科学院工程热物理研究所
  • 收稿日期:2024-04-23 修回日期:2024-06-11 出版日期:2024-06-17 发布日期:2024-06-17
  • 通讯作者: 赵庆军
  • 基金资助:
    国家自然科学基金重点项目;国家科技重大专项

Effect of wake/shock rotor/rotor interactions on aerodynamic load of blade in multistage vaneless counter-rotating turbine

  • Received:2024-04-23 Revised:2024-06-11 Online:2024-06-17 Published:2024-06-17

摘要: 为研究多级无导叶对转涡轮上游叶片尾迹/激波对下游转子气动载荷分布的影响,采用非定常数值模拟方法分析了复杂级间流动对下游叶片表面压力脉动的影响规律。研究表明,多级无导叶对转涡轮取消全部的导向叶片,没有导叶提供预旋的第一级动叶具有吸力面无遮盖段长的特点。吸力面长无遮盖段与相邻叶片尾迹形成类似拉瓦尔喷管的缩扩型尾迹流道,在转转级间非定常干涉作用下,第一级动叶出口马赫数降低,因而在第一级动叶吸力面近尾缘处已有外伸激波的基础上形成了一个新压缩波(尾迹流道激波)。由于尾迹流道激波传播方向与第一级动叶旋转方向相同,在一个周期内尾迹流道激波仅在第二级动叶吸力面进行扫掠。内伸激波反射波从第二级动叶吸力面扫掠至压力面且速度相比尾迹流道激波较快,一个周期内的特定时刻,内伸激波反射波与尾迹流道激波同时作用于第二级动叶吸力面28.8%轴向位置,导致该位置压力脉动峰值显著上升,其峰值达到外伸激波扫掠导致压力脉动峰值的81.2%。外伸激波是引起第二级动叶叶表压力载荷变化的主要因素,其主要扰动区域为第二级动叶前缘,在一个周期内在该区域引起的最大压力脉动峰值达到压力时均值的47.7%。受到多道内伸激波反射波与尾迹流道激波的耗散作用,第一级动叶尾迹强度显著降低,因而其对第二级动叶叶表气动载荷的影响较小。频谱分析结果表明,由于尾迹流道激波与内伸激波反射波的叠加作用效果与外伸激波相近,第二级动叶叶表压力脉动的主频是外伸激波扫掠频率的两倍。

关键词: 多级无导叶对转涡轮, 数值模拟, 动动干涉, 非定常流动, 气动载荷

Abstract: To investigate the effect of wake/shock on downstream turbine blade aerodynamic load distribution in multistage vaneless counter-rotating turbine, this paper employed unsteady numerical simulation to analyze the influence of complex inter-stage flow on the pressure fluctuation on the downstream blade surface. The absence of guide vanes in multistage vaneless counter-rotating turbine creates uncovered suction side of the first-stage moving blade, form-ing a converging-diverging wake flow passage resembling a Laval nozzle. Unsteady rotor/rotor interactions de-crease the outlet Mach number of the first-stage moving blade, forming a new compression wave (wake flow pas-sage shock) near its trailing edge. Since the propagation direction of the wake flow passage shock is the same as the rotation direction of the first-stage moving blade, within one cycle, the wake flow passage shock only sweeps across the suction side of the second-stage moving blade. Reflected shock of pressure side leg of the trailing edge shock sweeps from the suction side to the pressure side of the second-stage moving blade, and its velocity is faster than that of the wake flow passage shock. At a specific moment within one cycle, reflected shock of pressure side leg of the trailing edge shock and the wake flow passage shock wave act simultaneously on the 28.8% axial posi-tion of the suction side of the second-stage moving blade, causing a significant increase in the pressure fluctuation peak at that position, with the peak reaching 81.2% of that caused by suction side leg of the trailing-edge shock sweep-induced pressure fluctuation peak. Suction side leg of the trailing-edge shock is the primary factor causing changes in the pressure load on the blade surface of the second-stage moving blade, with its main disturbance re-gion being the leading edge of the second-stage moving blade. The maximum pressure fluctuation peak caused by suction side leg of the trailing-edge shock sweep in this region within one cycle reaches 47.7% of the pressure mean value. Due to the dissipative effect of reflected shock of pressure side leg of the trailing edge shock and wake flow passage shock waves, the wake intensity of the first-stage moving blade decreases significantly, resulting in a minor influence on the aerodynamic load on the blade surface of the second-stage moving blade. Spectral analysis results indicate that due to the superimposed effect of the wake flow passage shock wave and reflected shock of pressure side leg of the trailing edge shock, similar to the suction side leg of the trailing-edge shock, the main fre-quency of the pressure fluctuation on the blade surface of the second-stage moving blade is twice the sweep fre-quency of the suction side leg of the trailing-edge shock.

Key words: counter-rotating turbine, numerical simulation, rotor/rotor interactions, unsteady flow, aerodynamic load

中图分类号: