航空学报 > 2024, Vol. 45 Issue (S1): 730557-730557   doi: 10.7527/S1000-6893.2024.30557

较大尺度波长结节翼在临界角附近的特性分析

郭翔鹰1(), 许杰1, 黄永畅2   

  1. 1.北京工业大学 数学统计学与力学学院,北京 100124
    2.北京工业大学 机械与能源工程学院,北京 100124
  • 收稿日期:2024-04-19 修回日期:2024-04-23 接受日期:2024-04-29 出版日期:2024-05-16 发布日期:2024-05-14
  • 通讯作者: 郭翔鹰 E-mail:guoxy@bjut.edu.cn
  • 基金资助:
    国家自然科学基金(12172014)

Characteristic analysis of large-scale wavelength protuberances wings near critical angle

Xiangying GUO1(), Jie XU1, Yongchang HUANG2   

  1. 1.School of Mathematical Statistics and Mechanics,Beijing University of Technology,Beijing 100124,China
    2.School of Mechanical and Energy Engineering,Beijing University of Technology,Beijing 100124,China
  • Received:2024-04-19 Revised:2024-04-23 Accepted:2024-04-29 Online:2024-05-16 Published:2024-05-14
  • Contact: Xiangying GUO E-mail:guoxy@bjut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12172014)

摘要:

近年来,前缘结节作为机翼分离控制的被动方法在学界吸引了较多关注。本文通过数值模拟研究了2个具有较大尺度波长的前缘结节在临界角度附近对全翼展机翼空气动力学的影响。与基线机翼相比,2种较大尺度波长的改进翼型失速过程都是缓慢且稳定的。通过数值仿真研究其表面流动特性,发现1.5倍弦长波长的结节翼在失速前后皆保持了一种单一且规律性的流动模式,而波长为1倍弦长的结节翼表面流动模式会随着角度的增大从单一规律的流动转变为较复杂的多种流动组合。同时提出了一种机制来解释这种流动模式的转变,并通过2种流动组合机制解释了不同流动模式产生的原因。

关键词: 翼型, 失速, 前缘结节, 流动控制, 流动模式

Abstract:

In recent years, leading-edge serrations as a passive method for wing separation control have attracted significant attention in academia. This paper investigates the influence of two leading-edge tubercles with relatively large-scale wavelengths on the aerodynamics of a full-span wing near critical angles through numerical simulations. Compared to the baseline wing, the stalling process of the two improved wing shapes with larger-scale wavelengths is both slow and stable. By studying the surface flow characteristics through numerical simulations, we found that the wing with serrations having a wavelength of 1.5 times the chord length maintained a singular and regular flow pattern both before and after stalling, while the flow pattern of the wing with a wavelength equal to the chord length transitioned from a singular, regular flow to a more complex combination of multiple flow patterns as the angle increased. A mechanism is proposed to explain this transition in flow patterns, and two flow combination mechanisms are presented to explain the reasons for the different flow patterns.

Key words: airfoil, stall, leading-edge protuberances, flow control, flow pattern

中图分类号: