1 |
杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377.
|
|
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese).
|
2 |
TIRPAK J A. Air force creates new PEO for NGAD, applying “Digital Century Series” idea [EB/OL]. (2019-10-02)[2022-12-29]..
|
3 |
曲东才. 战斗机过失速机动与近距格斗空战[J]. 航空兵器, 2000, 7(4): 12-14.
|
|
QU D C. Fighter post-stall maneuver and close combat air combat[J]. Aero Weaponry, 2000, 7(4): 12-14 (in Chinese).
|
4 |
史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报, 2015, 36(8): 2717-2734.
|
|
SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2717-2734 (in Chinese).
|
5 |
HERBST W B. Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8): 561-566.
|
6 |
王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1-25.
|
|
WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1-25 (in Chinese).
|
7 |
张子军, 赵彤, 孙烨, 等. 飞机大迎角飞行问题研究综述[J]. 航空工程进展, 2022, 13(3): 74-85.
|
|
ZHANG Z J, ZHAO T, SUN Y, et al. Review of the study on high-angle-of-attack flight problems of aircraft[J]. Advances in Aeronautical Science and Engineering, 2022, 13(3): 74-85 (in Chinese).
|
8 |
肖志祥, 崔文瑶, 刘健, 等. 新一代战斗机非定常流动数值研究综述[J]. 航空学报, 2020, 41(6): 523451.
|
|
XIAO Z X, CUI W Y, LIU J, et al. Review of numerical research on unsteady flows of the new generation fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523451 (in Chinese).
|
9 |
汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347.
|
|
WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347 (in Chinese).
|
10 |
KALVISTE J. Use of rotary balance and forced oscillation test data in six degrees of freedom simulation[C]∥ Proceedings of the 9th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1982.
|
11 |
饶秋磊, 韩意新. 大迎角气动力建模与失速/尾旋模态仿真[J]. 应用力学学报, 2018, 35(3): 472-478.
|
|
RAO Q L, HAN Y X. High angle of attack aerodynamic modeling and simulation and analysis of stall/spin mode[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 472-478 (in Chinese).
|
12 |
李林刚, 高浩. 飞机大迎角气动数据的组成与应用[J]. 飞行力学, 1997, 15(1): 1-7.
|
|
LI L G, GAO H. Aero datas integration and application of the airplane at high angle of attack[J]. Flight Dynamics, 1997, 15(1): 1-7 (in Chinese).
|
13 |
MURCH A M, FOSTER J V. Recent NASA research on aerodynamic modeling of post-stall and spin dynamics of large transport airplanes:AIAA-2007-0463[R]. Reston: AIAA, 2007.
|
14 |
BRYAN G H, WILLIAMS W E. The longitudinal stability of aerial gliders[J]. Proceedings of the Royal Society of London, 1904, 73(488/489/490/491/492/493/494/495/496): 100-116.
|
15 |
LIN G F, LAN C E, BRANDON J M, et al. A generalized dynamic aerodynamic coefficient model for flight dynamics applications: AIAA-1997-3643[R]. Reston: AIAA, 1997.
|
16 |
TOBAK M. On the use of the indicial-function concept in the analysis of unsteady motions of wings and wing-tail combinations: NACA-TR-1188 [R].Washington,D.C.:NACA,1954.
|
17 |
GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115.
|
18 |
汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4): 391-398.
|
|
WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 391-398 (in Chinese).
|
19 |
沈霖, 黄达, 吴根兴, 等. 战斗机大迎角非定常气动力建模[J]. 航空学报, 2020, 41(6): 523440.
|
|
SHEN L, HUANG D, WU G X, et al. Unsteady aerodynamic modeling for fighter configuration at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523440 (in Chinese).
|
20 |
SHEN L, HUANG D, WU G X. Time delay compensation in lateral-directional flight control systems at high angles of attack[J]. Chinese Journal of Aeronautics, 2021, 34(4): 1-18.
|
21 |
岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模[J]. 航空学报, 2020, 41(8): 123664.
|
|
CEN F, LI Q, LIU Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123664 (in Chinese).
|
22 |
岑飞, 刘志涛, 蒋永, 等. 民机极限飞行状态非定常气动力建模[J]. 航空学报, 2022, 43(8): 125582.
|
|
CEN Fei, LIU Z T, JIANG Y, et al. Unsteady aerodynamics modeling of civil transport configuration under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125582 (in Chinese).
|
23 |
KOU J Q, ZHANG W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125: 100725.
|
24 |
史志伟, 王峥华, 李俊成. 径向基神经网络在非线性非定常气动力建模中的应用研究[J]. 空气动力学学报, 2012, 30(1): 108-112.
|
|
SHI Z W, WANG Z H, LI J C. The research of RBFNN in modeling of nonlinear unsteady aerodynamics[J]. Acta Aerodynamica Sinica, 2012, 30(1): 108-112 (in Chinese).
|
25 |
ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028.
|
26 |
GHOREYSHI M, JIRÁSEK A, CUMMINGS R M. Computational approximation of nonlinear unsteady aerodynamics using an aerodynamic model hierarchy[J]. Aerospace Science and Technology, 2013, 28(1): 133-144.
|
27 |
LI W J, LAIMA S J, JIN X W, et al. A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations[J]. Nonlinear Dynamics, 2020, 100(3): 2071-2087.
|
28 |
LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3): 2157-2177.
|
29 |
BAGHERZADEH S A. Nonlinear aircraft system identification using artificial neural networks enhanced by empirical mode decomposition[J]. Aerospace Science and Technology, 2018, 75: 155-171.
|
30 |
LYU Y X, CAO Y Y, ZHANG W G, et al. Dynamic surface control design of post-stall maneuver under unsteady aerodynamics[J]. Aerospace Science and Technology, 2018, 80: 269-280.
|
31 |
GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft: AIAA-2004-5276[R]. Reston: AIAA, 2004.
|
32 |
陈翔, 展京霞, 陈科, 等. 非定常气动力建模研究与虚拟飞行试验验证[J]. 实验流体力学, 2022, 36(3): 65-72.
|
|
CHEN X, ZHAN J X, CHEN K, et al. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 65-72 (in Chinese).
|
33 |
李仑, 王刚, 索谦, 等. 飞行器阵风响应的CFD-6DOF仿真分析[J]. 航空工程进展, 2015, 6(1): 26-31.
|
|
LI L, WANG G, SUO Q, et al. CFD-6DOF simulation analysis of aircraft gust response[J]. Advances in Aeronautical Science and Engineering, 2015, 6(1): 26-31 (in Chinese).
|
34 |
王培涵, 吴志刚, 杨超, 等. 一种适用于弹性飞机飞行仿真的补丁方法[J]. 航空学报, 2023, 44(6): 85-101.
|
|
WANG P H, WU Z G, YANG C, et al. Patch module method for flight simulation of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 85-101 (in Chinese).
|
35 |
王刚, 邢宇, 朱亚楠. 旋转弹气动力建模与飞行轨迹仿真[J]. 航空学报, 2017, 38(1): 120169.
|
|
WANG G, XING Y, ZHU Y N. Aerodynamic modeling and flight trajectory simulation of spinning projectile[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120169 (in Chinese).
|
36 |
师妍, 万志强, 吴志刚, 等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证[J]. 航空学报, 2022, 43(1): 125474.
|
|
SHI Y, WAN Z Q, WU Z G, et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 125474 (in Chinese).
|
37 |
WANG X, KOU J Q, ZHANG W W. Unsteady aerodynamic modeling based on fuzzy scalar radial basis function neural networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5107-5121.
|
38 |
ZHANG W B, GUO X C, WANG C Y, et al. A POD-based center selection for RBF neural network in time series prediction problems[C]∥International Conference on Adaptive and Natural Computing Algorithms. Berlin: Springer, 2007: 189-198.
|
39 |
KOU J Q, ZHANG W W. An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models[J]. Aerospace Science and Technology, 2016, 49: 197-208.
|
40 |
WANG X, KOU J Q, ZHANG W W, et al. Incorporating physical models for dynamic stall prediction based on machine learning[J]. AIAA Journal, 2022, 60(7): 4428-4439.
|
41 |
NGUYEN L T, OGBURN M E, GILBERT W P,et al. Simulator study of stall/post-stall characteristics of a fighter airplane with longitudinal static stability:NASA-TP-1538[R]. Washington, D.C.: NASA, 1979.
|
42 |
KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139.
|
43 |
EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]∥Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway: IEEE Press, 2002: 39-43.
|