1 |
岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报, 2022, 54(2): 263-288.
|
|
YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-Mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese).
|
2 |
FENG S, CHANG J T, ZHANG J L, et al. Numerical and experimental investigation of improving combustion performance of variable geometry dual-mode combustor[J]. Aerospace Science and Technology, 2017, 64: 213-222.
|
3 |
WANG Y Y, CHENG K L, TANG J F, et al. Analysis of the maximum flight Mach number of hydrocarbon-fueled scramjet engines under the flight cruising constraint and the combustor cooling requirement[J]. Aerospace Science and Technology, 2020, 98: 105594.
|
4 |
MARQUARDT P, KLAAS M, SCHRÖDER W. Experimental investigation of isoenergetic film-cooling flows with shock interaction[J]. AIAA Journal, 2019, 57(9): 3910-3923.
|
5 |
GOYNE C P, STALKER R J, PAULL A, et al. Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2000, 37(6): 740-746.
|
6 |
ZHANG J Z, ZHANG S C, WANG C H, et al. Recent advances in film cooling enhancement: A review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119-1136.
|
7 |
ZHENG Y J, HASSAN I. Experimental flow field investigations of a film cooling hole featuring an orifice[J]. Applied Thermal Engineering, 2014, 62(2): 766-776.
|
8 |
ZHU R, SIMON T W, XIE G N. Influence of secondary hole injection angle on enhancement of film cooling effectiveness with horn-shaped or cylindrical primary holes[J]. Numerical Heat Transfer Part A-Applications, 2018, 74(5): 1207-1227.
|
9 |
王进, 孙杰, 赵占明, 等. 基于结构参数分析的姊妹孔气膜冷却性能研究[J]. 航空学报, 2021, 42(7): 124775.
|
|
WANG J, SUN J, ZHAO Z M, et al. Research on film cooling performance of sister hole based on structural parameter analysis[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124775 (in Chinese).
|
10 |
HAN C, REN J, JIANG H D. Multi-parameter influence on combined-hole film cooling system[J]. International Journal of Heat and Mass Transfer, 2012, 55(15-16): 4232-4240.
|
11 |
康忠, 李国庆, 张深, 等. 收缩型双射流孔气膜冷却特性与损失机理[J]. 航空动力学报, 2023, 38(2): 335-343.
|
|
KANG Z, LI G Q, ZHANG S, et al. Film cooling characteristics and loss mechanism of contracted double-jet hole[J]. Journal of Aerospace Power, 2023, 38(2): 335-343 (in Chinese).
|
12 |
刘存良, 朱惠人, 白江涛. 收缩-扩张形气膜孔提高气膜冷却效率的机理研究[J]. 航空动力学报, 2008, 23(4): 598-604.
|
|
LIU C L, ZHU H R, BAI J T. Study on the physics of film-cooling effectiveness enhancement by the converging-expanding hole[J]. Journal of Aerospace Power, 2008, 23(4): 598-604 (in Chinese).
|
13 |
YAO Y, ZHANG J Z. Investigation on film cooling characteristics from a row of converging slot-holes on flat plate[J]. Science China Technological Sciences, 2011, 54(7): 1793-1800.
|
14 |
WANG C H, FAN F S, ZHANG J Z, et al. Large eddy simulation of film cooling flow from converging slot-holes[J]. International Journal of Thermal Sciences, 2018, 126: 238-251.
|
15 |
HUANG Y, ZHANG J Z, WANG C H. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface[J]. Heat and Mass Transfer, 2018, 54(6): 1741-1754.
|
16 |
郑星, 冯黎明, 张云天, 等. 超声速边界层燃烧减阻技术研究进展[J]. 固体火箭技术, 2021, 44(4): 438-447.
|
|
ZHENG X, FENG L M, ZHANG Y T, et al. Review of supersonic boundary layer combustion for skin friction drag reduction technology[J]. Journal of Solid Rocket Technology, 2021, 44(4): 438-447 (in Chinese).
|
17 |
刘宏鹏, 高振勋, 蒋崇文, 等. 可压缩湍流边界层燃烧减阻研究综述[J]. 空气动力学学报, 2020, 38(3): 593-602.
|
|
LIU H P, GAO Z X, JIANG C W, et al. Review of researches on compressible turbulent boundary layer combustion for skin friction reduction[J]. Acta Aerodynamica Sinica, 2020, 38(3): 593-602 (in Chinese).
|
18 |
GOYNE C, STALKER R, BRESCIANINI C, et al. Drag reduction by film cooling with hydrogen on transatmospheric vehicles[C]∥ Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999.
|
19 |
STALKER R J. Control of hypersonic turbulent skin friction by boundary- layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2005, 42(4): 577-587.
|
20 |
PUDSEY A S, WHEATLEY V, BOYCE R R. Supersonic boundary-layer combustion via multiporthole injector arrays[J]. AIAA Journal, 2015, 53(10): 2890-2906.
|
21 |
GAO Z X, JIANG C W, PAN S W, et al. Combustion heat-release effects on supersonic compressible turbulent boundary layers[J]. AIAA Journal, 2015, 53(7): 1949-1968.
|
22 |
王帅, 何国强, 秦飞, 等. 超声速内流道摩擦阻力分析及减阻技术研究[J]. 航空动力学报, 2019, 34(4): 908-919.
|
|
WANG S, HE G Q, QIN F, et al. Research on skin-friction drag and drag reduction technics in a supersonic inner flow path[J]. Journal of Aerospace Power, 2019, 34(4): 908-919 (in Chinese).
|
23 |
ZUO J Y, ZHANG S L, WEI D Y, et al. Effects of combustion on supersonic film cooling using gaseous hydrocarbon fuel as coolant[J]. Aerospace Science and Technology, 2020, 106: 106202.
|
24 |
WEI J F, ZHANG S L, XUE J J, et al. Effects of wall thermal state on the cooling and friction reduction characters for supersonic film using gaseous hydrocarbon fuel[J]. Applied Thermal Engineering, 2022, 209: 118291.
|
25 |
ZHANG D, FENG Y, ZHANG S L, et al. Quasi-one-dimensional model of scramjet combustor coupled with regenerative cooling[J]. Journal of Propulsion and Power, 2016, 32(3): 687-697.
|
26 |
CHANG Y C, JIA M, LIU Y D, et al. Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology[J]. Combustion and Flame, 2013, 160(8): 1315-1332.
|
27 |
GRUBER M R, GOSS L P. Surface pressure measurements in supersonic transverse injection flowfields[J]. Journal of Propulsion and Power, 1999, 15(5): 633-641.
|
28 |
BURROWS M C, KURKOV A P. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream[J]. AIAA Journal, 1973, 11(9): 1217-1218.
|
29 |
SURAWEERA M, MEE D, STALKER R. Skin friction reduction in hypersonic turbulent flow by boundary layer combustion[C]∥ Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
|
30 |
KAMETANI Y, FUKAGATA K. Direct numerical simulation of spatially developing turbulent boundary layer for skin friction drag reduction by wall surface-heating or cooling[J]. Journal of Turbulence, 2012, 13: N34.
|