1 |
HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39.
|
2 |
GERDROODBARY M B. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J]. Shock Waves, 2014, 24(5): 537-543.
|
3 |
张涵信, 黄洁, 高树椿. 带尖针杆的钝体粘性绕流的数值模拟[J]. 航空学报, 1994, 15(5): 519-525.
|
|
ZHANG H X, HUANG J, GAO S C. Numerical simulation of hypersonic flow over axisymmetric spiked body[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(5): 519-525. (in Chinese)
|
4 |
PHAM H S, SHODA T, TAMBA T, et al. Impacts of laser energy deposition on flow instability over double-cone model[J]. AIAA Journal, 2017, 55(9): 2992-3000.
|
5 |
周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
|
|
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
|
6 |
马正雪, 罗振兵, 赵爱红, 等. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(S2): 727747.
|
|
MA Z X, LUO Z B, ZHAO A H, et al. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727747 (in Chinese).
|
7 |
吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359.
|
|
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese).
|
8 |
戎宜生, 刘伟强. 再入飞行器鼻锥逆向喷流对流场及气动热的影响[J]. 航空学报, 2010, 31(8): 1552-1557.
|
|
RONG Y S, LIU W Q. Influence of opposing jet on flow field and aerodynamic heating at nose of a reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1552-1557 (in Chinese).
|
9 |
ZHOU C Y, JI W Y, ZHANG X W, et al. Numerical investigation on counter-flow jet drag reduction of a spherical body[J]. Engineering Mechanics, 2013, 30(1):441-447.
|
10 |
HUANG J, YAO W X. A novel non-ablative thermal protection system with combined spike and opposing jet concept[J]. Acta Astronautica, 2019, 159: 41-48.
|
11 |
ZHANG R R, DONG M Z, HUANG W, et al. Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J]. Acta Astronautica, 2019, 160: 62-75.
|
12 |
HUANG W, ZHAO Z T, YAN L, et al. Parametric study on the drag and heat flux reduction mechanism of forward-facing cavity on a blunt body in supersonic flows[J]. Aerospace Science and Technology, 2017, 71: 619-626.
|
13 |
FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368.
|
14 |
ADAMS R. The effects of retrorockets on the aerodynamic characteristics of conical aeroshell planetary entry vehicles: AIAA-1970-0219[R]. Reston: AIAA, 1970.
|
15 |
BILAL H, SHAH S, LU X Y. Computational study of drag reduction at various freestream flows using a counterflow jet from a hemispherical cylinder[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(1): 150-163.
|
16 |
KULKARNI V, REDDY K. Counterflow drag reduction studies for a blunt cone in high enthalpy flow[J]. International Journal of Hypersonics, 2010, 1(1): 69-76.
|
17 |
FOMICHEV V P, FOMIN V M, KOROTAEVA T A, et al. Hypersonic flow around a blunted body with counterflow plasma jet[R]. Novosibirsk: Institute of Theoretical and Applied Mechanics, 2002.
|
18 |
SHEN B X, LIU W Q, YIN L. Drag and heat reduction efficiency research on opposing jet in supersonic flows[J]. Aerospace Science and Technology, 2018, 77: 696-703.
|
19 |
ZHANG R R, HUANG W, LI L Q, et al. Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 127: 503-512.
|
20 |
GUO J H, LIN G P, BU X Q, et al. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 121: 84-96.
|
21 |
ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(2): 163-177.
|
22 |
LI S B, HUANG W, LEI J, et al. Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1087-1098.
|
23 |
DENG F, XIE F, HUANG W, et al. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Science China Technological Sciences, 2018, 61(7): 1056-1071.
|
24 |
ZHANG R R, HUANG W, YAN L, et al. Drag and heat flux reduction induced by the pulsed counterflowing jet with different waveforms on a blunt body in supersonic flows[J]. Acta Astronautica, 2019, 160: 635-645.
|
25 |
ASO S, HAYASHI K, MIZOGUCHI M. A study on aerodynamic heating reduction due to opposing jet in hypersonic flow:AIAA-2002-0646[R]. Reston: AIAA, 2002.
|
26 |
MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334.
|
27 |
PARK C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244.
|
28 |
GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. Washington, D.C.: NASA, 1989.
|
29 |
SARMA G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences, 2000, 36(3-4): 281-349.
|
30 |
CANDLER G V, NOMPELIS I. Computational fluid dynamics for atmospheric entry: Mathematics-2009- 58908 [R]: Minnesota: University of Minnesota, 2009.
|
31 |
PARK C. Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles: AIAA-1984-1730[R]. Reston: AIAA, 1984.
|
32 |
BIRD G A. The DSMC method[M]. 2nd ed. Sydney: Physics, 2013: 105-107.
|
33 |
CASSEAU V. An open-source CFD solver for planetary entry[D]. Glasgow: University of Strathclyde, 2017:13-15.
|
34 |
ZHANG R R, HUANG W, YAN L, et al. Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows[J]. Acta Astronautica, 2018, 146: 123-133.
|
35 |
MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 470-475.
|
36 |
YANG J L, LIU M. Numerical analysis of hypersonic thermochemical non-equilibrium environment for an entry configuration in ionized flow[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2641-2654.
|
37 |
MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334.
|
38 |
张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600.
|
|
ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese).
|
39 |
YANG X F, TANG W, GUI Y W, et al. Hypersonic static aerodynamics for Mars science laboratory entry capsule[J]. Acta Astronautica, 2014, 103: 168-175.
|
40 |
BIBI A, MAQSOOD A, SHERBAZ S, et al. Drag reduction of supersonic blunt bodies using opposing jet and nozzle geometric variations[J]. Aerospace Science and Technology, 2017, 69: 244-256.
|
41 |
GUO X D, ZHOU C Y. Unsteady behavior of long-penetration mode with a counterflowing jet[J]. Journal of Aerospace Engineering, 2023, 36(1): 04022111.
|