[1] FERRI A. Experimental results with airfoils tested in the high-speed tunnel at Guidonia: NACA-TM-946[R]. Washington, D.C. : NACA, 1940. [2] FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. [3] SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124054 (in Chinese). 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12): 124054. [4] MATHEIS J, HICKEL S. On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions[J]. Journal of Fluid Mechanics, 2015, 776: 200-234. [5] WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371 (in Chinese). 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. [6] DELERY J, MARVIN J G, RESHOTKO E. Shock-wave boundary layer interactions: AGARD-AG-280[R]. Washington, D.C. : NASA, 1986. [7] YAO Y, GAO B. Flow structure of incident shock wave boundary layer interaction with separation[J]. ActaAerodynamica Sinica, 2019, 37(5): 740-747, 769 (in Chinese). 姚瑶, 高波. 入射激波边界层干扰分离流场结构研究[J]. 空气动力学学报, 2019, 37(5): 740-747, 769. [8] TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123328 (in Chinese). 童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3): 123328. [9] ZUO F Y, MEMMOLO A, HUANG G P, et al. Direct numerical simulation of conical shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2019, 877: 167-195. [10] ZHANG K Y. Hypersonic curved compression inlet and its inverse design[M]. Beijing: National Defense Industry Press, 2019: 97-116 (in Chinese). 张堃元. 高超声速曲面压缩进气道及其反设计[M]. 北京: 国防工业出版社, 2019: 97-116. [11] NEUMANN R, HAYES J. Prediction techniques for the characteristics of the three dimensional shock wave/turbulent boundary layer interaction[C]//15th Aerospace Sciences Meeting. Reston: AIAA, 1977. [12] CAMBIER L, ESCANDE B. Calculation of a three-dimensional shock wave-turbulent boundary-layer interaction[J]. AIAA Journal, 1990, 28(11): 1901-1908. [13] XUE L S, SCHRIJER FF J, VAN OUDHEUSDEN B W, et al. Theoretical study on regular reflection of shock wave-boundary layer interactions[J]. Journal of Fluid Mechanics, 2020, 899: A30. [14] CHAPMAN D R, KUEHN D M, LARSON H K. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition: NACA-TN-3869[R]. Washington, D.C. : NACA, 1957. [15] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. A parametric study of laminar and transitional oblique shock wave reflections[J]. Journal of Fluid Mechanics, 2018, 844: 187-215. [16] GROSSMAN I J, BRUCE P J K. Confinement effects on regular-irregular transition in shock-wave-boundary-layer interactions[J]. Journal of Fluid Mechanics, 2018, 853: 171-204. [17] MÖLDER S. Curved shock theory[J]. Shock Waves, 2016, 26(4): 337-353. [18] MÖLDER S. Flow behind concave shock waves[J]. Shock Waves, 2017, 27(5): 721-730. [19] MÖLDER S. Reflection of curved shock waves[J]. Shock Waves, 2017, 27(5): 699-720. [20] SHI C G, HAN W Q, DEITERDING R, et al. Second-order curved shock theory[J]. Journal of Fluid Mechanics, 2020, 891: A21. [21] BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011: 60-61. [22] ERDOS J, PALLONE A. Shock-boundary layer interaction and flow separation[C]//Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute. Stanford: Stanford University Press, 1962: 239-254. [23] CHEN M Z. Fundamentals ofviscous fluid dynamics[M]. Beijing: Higher Education Press, 2002: 237-372 (in Chinese). 陈懋章. 粘性流体动力学基础[M]. 北京: 高等教育出版社, 2002: 237-372. [24] EDNEY B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock: NSA-22-049015[R]. Washington, D.C. : Office of Scientific and Technical Information, 1968. [25] YANG J M, LI Z F, ZHU Y J. Shock waves and shock interactions in hypersonic flow[M]. Beijing: National Defense Industry Press, 2019: 51-79 (in Chinese). 杨基明, 李祝飞, 朱雨建. 高超声速流动中的激波及相互作用[M]. 北京: 国防工业出版社, 2019: 51-79. [26] COLES D. The law of the wake in the turbulent boundary layer[J]. Journal of Fluid Mechanics, 1956, 1(2): 191-226. [27] NEILAND V Y. Flow behind the boundary layer separation point in a supersonic stream[J]. Fluid Dynamics, 1971, 6(3): 378-384. [28] RAMESH M D, TANNEHILL J C. Correlations to predict the streamwise influence regions in supersonic turbulent flows[J]. Journal of Aircraft, 2004, 41(2): 274-283. [29] MILLER J, TANNEHILL J, LAWRENCE S. PNS algorithm for solving supersonic flows with upstream influences[J]. AIAA Journal, 2000, 38(10): 1837-1845. [30] LU X G, YI S H, NIU H B, et al. Experimental study on shock and turbulent boundary layer interactions under different incident shock waves[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(10): 61-72 (in Chinese). 陆小革, 易仕和, 牛海波, 等. 不同入射激波条件下激波与湍流边界层干扰的实验研究[J]. 中国科学: 物理学力学天文学, 2020, 50(10): 61-72. [31] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows: AIAA-1992-0439[R]. Reston: AIAA, 1992. [32] TAO Y, FAN X Q, ZHAO Y L. Viscous effects of shock reflection hysteresis in steady supersonic flows[J]. Journal of Fluid Mechanics, 2014, 759: 134-148. [33] HE G. Investigation on the three-dimensional swept impinging oblique shock/turbulent boundary layer interactions[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). 何刚. 三维后掠激波/湍流边界层干扰研究[D]. 长沙: 国防科技大学, 2018. [34] WANG C P, XUE L S, CHENG K M. Application of the minimum entropy production principle to shock reflection induced by separation[J]. Journal of Fluid Mechanics, 2018, 857: 784-805. |