[1] ZHU H X, LIU Y B, CAO R, et al. Feasibility analysis for underlying indictors in control performance evaluation of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 323259 (in Chinese). 朱鸿绪, 刘燕斌, 曹瑞, 等. 高超声速飞行器底层性能评价指标的可行性分析[J]. 航空学报, 2020, 41(3): 323259. [2] CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623686 (in Chinese). 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8): 623686. [3] OU M. Design and optimization of the aerospike and opposing jet combinational thermal protection system for hypersonic re-entry vehicles[D]. Changsha: National University of Defense Technology, 2018: 18-19 (in Chinese). 欧敏. 高超声速再入飞行器减阻杆与逆向喷流组合热防护系统设计与优化[D]. 长沙: 国防科技大学, 2018: 18-19. [4] WU D F, LIN L J, WU W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1 500 ℃[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 223612 (in Chinese). 吴大方, 林鹭劲, 吴文军, 等. 1 500 ℃极端高温环境下高超声速飞行器轻质隔热材料热/振联合试验[J]. 航空学报, 2020, 41(7): 223612. [5] HUANG W, ZHAO Z T, YAN L, et al. Parametric study on the drag and heat flux reduction mechanism of forward-facing cavity on a blunt body in supersonic flows[J]. Aerospace Science and Technology, 2017, 71: 619-626. [6] SUDARSHAN B, SARAVANAN S. Heat flux characteristics within and outside aforward facing cavity in a hypersonic flow[J]. Experimental Thermal and Fluid Science, 2018, 97: 59-69. [7] LUAN Y, HE F, WANG J H. Transpiration cooling of nose-cone with forward-facing cavity: Numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 623937 (in Chinese). 栾芸, 贺菲, 王建华. 飞行器鼻锥凹腔-发散组合冷却数值模拟[J]. 航空学报, 2021, 42(2): 623937. [8] RIGGINS D, NELSON H F, JOHNSON E. Blunt-body wave drag reduction using focused energy deposition[J]. AIAA Journal, 1999, 37(4): 460-467. [9] GAUER M, PAULL A. Numerical investigation of a spiked blunt nose cone at hypersonic speeds[J]. Journal of Spacecraft and Rockets, 2008, 45(3): 459-471. [10] MANSOUR K, KHORSANDI M. The drag reduction in spherical spiked blunt body[J]. Acta Astronautica, 2014, 99: 92-98. [11] KALIMUTHU R, MEHTA R C, RATHAKRISHNAN E. Drag reduction for spike attached to blunt-nosed body at Mach 6[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 219-222. [12] HE K, CHEN J Q, DONG W Z. Penetration mode and dragreduction research in hypersonic flows using a counter-flow jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 438-445 (in Chinese). 何琨, 陈坚强, 董维中. 逆向喷流流场模态分析及减阻特性研究[J]. 力学学报, 2006, 38(4): 438-445. [13] DENG F, XIE F, HUANG W, et al. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Science China Technological Sciences, 2018, 61(7): 1056-1071. [14] ZHANG W Q, WANG X, ZHANG Z J, et al. Transient numerical simulation of hemispherical cone with combined opposing jet in hypersonic flow[J]. Acta Astronautica, 2020, 175: 327-337. [15] LI B, WANG X Z, LIU X M. Numerical investigation of multi-lateral jets interactions flow characteristics at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2828-2839 (in Chinese). 李斌, 王学占, 刘仙名. 大攻角侧向多喷干扰流场特性数值模拟[J]. 航空学报, 2015, 36(9): 2828-2839. [16] LAI J, ZHAO Z L, WANG X B, et al. Uniform pitching motion and angular rate effects on transverse jet interaction[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122866 (in Chinese). 赖江, 赵忠良, 王晓冰, 等. 匀速俯仰运动及角速率对横向喷流的影响[J]. 航空学报, 2019, 40(10): 122866. [17] WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese). 王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116. [18] ZHANG H X, HUANG J, GAO S C. Numerical simulation of hypersonic flow over axisymmetric spiked body[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(5): 519-525 (in Chinese). 张涵信, 黄洁, 高树椿. 带尖针杆的钝体粘性绕流的数值模拟[J]. 航空学报, 1994, 15(5): 519-525. [19] QIN Q H, XU J L, GUO S. Fluid-thermal analysis of aerodynamic heating over spiked blunt body configurations[J]. Acta Astronautica, 2017, 132: 230-242. [20] VENUKUMAR B, JAGADEESH G, REDDY K P J. Counterflow drag reduction by supersonic jet for a blunt body in hypersonic flow[J]. Physics of Fluids, 2006, 18(11): 118104. [21] HAYASHI K, ASO S. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet: AIAA-2003-4041[R]. Reston: AIAA, 2003. [22] HAYASHI K, ASO S, TANI Y. Numerical study of thermal protection system by opposing jet: AIAA-2005-0188[R]. Reston: AIAA, 2005. [23] HAYASHI K, ASO S, TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets, 2006, 43(1): 233-235. [24] GUO J H, LIN G P, BU X Q, et al. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows[J]. International Journal of Heat andMass Transfer, 2018, 121: 84-96. [25] LI S B, WANG Z G, BARAKOS G N, et al. Research on the drag reduction performance induced by the counterflowing jet forwaverider with variable blunt radii[J]. Acta Astronautica, 2016, 127: 120-130. [26] LI S B, HUANG W, LEI J, et al. Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1087-1098. [27] JI C, LIU B, LI S B, et al. Parametric investigation on drag reduction and thermal protection characteristics of the porous opposing jet in the hypersonic flow[J]. Aerospace Science and Technology, 2021, 116: 106867. [28] BARZEGAR GERDROODBARY M. Numerical analysis on cooling performance of counterflowing jet overaerodisked blunt body[J]. Shock Waves, 2014, 24(5): 537-543. [29] HUANG W, LIU J, XIA Z X. Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows[J]. Acta Astronautica, 2015, 115: 24-31. [30] OU M, YAN L, HUANG W, et al. Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 126: 10-31. [31] OU M, YAN L, HUANG W, et al. Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogatemodel[J]. Acta Astronautica, 2019, 155: 287-301. [32] ZHU L, CHEN X, LI Y K, et al. Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach[J]. Acta Astronautica, 2018, 142: 300-313. [33] ZHU L, LI Y K, CHEN X, et al. Hypersonic flow characteristics and relevant structure thermal response induced by the novel combined spike-aerodome and lateral jet strategy[J]. Aerospace Science and Technology, 2019, 95: 105459. [34] MENG Y S, YAN L, HUANG W, et al. Fluid-thermal coupled investigation on the combinational spike and opposing/lateral jet in hypersonic flows[J]. Acta Astronautica, 2021, 185: 264-282. [35] MENG Y S, YAN L, HUANG W, et al. Coupled investigation on drag reduction and thermal protection mechanism of a double-cone missile by the combined spike and multi-jet[J]. Aerospace Science and Technology, 2021, 115: 106840. [36] DONG M, LIAO J, DU Z, et al. Influences of lateral jet location and its number on the drag reduction of a blunted body in supersonic flows[J]. The Aeronautical Journal, 2020, 124(1277): 1055-1069. [37] KALIMUTHU R, MEHTA R C, RATHAKRISHNAN E. Experimental investigation on spiked body in hypersonic flow[J]. The Aeronautical Journal, 2008, 112(1136): 593-598. [38] BARZEGAR GERDROODBARY M, HOSSEINALIPOUR S M. Numerical simulation of hypersonic flow over highly blunted cones with spike[J]. Acta Astronautica, 2010, 67(1-2): 180-193. [39] LU H B, LIU W Q. Numerical investigation on properties of attack angle for an opposing jet thermal protection system[J]. Chinese Physics B, 2012, 21(8): 084401. [40] HE T Q, LUO S B. Research on drag and heat flux reduction of combination of spike and forward-facing jet in off-design regimes[J]. Flight Dynamics, 2019, 37(6): 46-50 (in Chinese). 何天琦, 罗世彬. 带逆向喷流激波针非设计点减阻防热性能研究[J]. 飞行力学, 2019, 37(6): 46-50. [41] GENG Y F, YAN C. Numericalinvestigation of self-aligning spiked bodies at hypersonic speeds[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 441-446 (in Chinese). 耿云飞, 阎超. 高超声速自适应激波针数值研究[J]. 力学学报, 2011, 43(3): 441-446. [42] HUANG J, YAO W X, QIN N. Heat reduction mechanismof hypersonic spiked blunt body with installation angle at large angle of attack[J]. Acta Astronautica, 2019, 164: 268-276. [43] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289. [44] CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over bodies with bluntnosetip[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124098 (in Chinese). 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020, 41(12): 124098. [45] KHAMOOSHI A, TAYLOR T, RIGGINS D W. Drag and heat transfer reductions in high-speed flows[J]. AIAA Journal, 2007, 45(10): 2401-2413. [46] ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 136: 808-820. |