1 |
赵瑾, 孙向春, 张俊, 等. 热防护材料气固界面传热传质问题研究进展[J]. 航空学报, 2022, 43(10): 527577.
|
|
ZHAO J, SUN X C, ZHANG J, et al. Research advances on heat and mass transfer coupling effect at gas-solid interface for thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527577 (in Chinese).
|
2 |
叶友达. 高超声速空气动力学研究进展与趋势[J]. 科学通报, 2015, 60(12): 1095-1103.
|
|
YE Y D. Advances and prospects in hypersonic aerodynamics[J]. Chinese Science Bulletin, 2015, 60(12): 1095-1103 (in Chinese).
|
3 |
李海燕, 唐志共, 杨彦广, 等. 高超声速飞行器高温流场数值模拟面临的问题[J]. 航空学报, 2015, 36(1): 176-191.
|
|
LI H Y, TANG Z G, YANG Y G, et al. Problems of numerical simulation of high-temperature gas flow fields for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 176-191 (in Chinese).
|
4 |
董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1): 311-324.
|
|
DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 311-324 (in Chinese).
|
5 |
LAUB B, VENKATAPATHY E. Thermal protection system technology and facility needs for demanding future planetary missions[C]∥ International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Paris: European Space Agency, 2004: 239-247.
|
6 |
王筠, 杨云华, 冯志海. 深空探测用热防护材料的现状及发展方向[J]. 宇航材料工艺, 2013, 43(5): 1-10.
|
|
WANG Y, YANG Y H, FENG Z H. Current status and further trend of thermal protection materials for deep space exploration[J]. Aerospace Materials & Technology, 2013, 43(5): 1-10 (in Chinese).
|
7 |
JOHNSON S M. Thermal protection materials: Development, characterization and evaluation: ARC-E-DAA-TN5732[R]. Washington, D.C.: NASA, 2012.
|
8 |
REYNIER P. Convective blockage during Earth re-entry: A review[C]∥ 40th AIAA Thermophysics Conference. Reston: AIAA, 2008.
|
9 |
REYNIER P. Survey of convective blockage for planetary entries[J]. Acta Astronautica, 2013, 83: 175-195.
|
10 |
BREWER R A, BRANT D N. Thermal protection system for the Galileo mission atmospheric entry probe: AIAA-1980-0358[R]. Reston: AIAA, 1980.
|
11 |
AHN H K, PARK C, SAWADA K. Dynamics of pyrolysis gas in charring materials ablation: AIAA-1998-0165[R]. Reston: AIAA, 1998.
|
12 |
OLYNICK D, CHEN Y K, TAUBER M E. Aerothermodynamics of the stardust sample return capsule[J]. Journal of Spacecraft and Rockets, 1999, 36(3): 442-462.
|
13 |
MARVIN J G, AKIN C M. Combined effects of mass addition and nose bluntness on boundary-layer transition[J]. AIAA Journal, 1970, 8(5): 857-863.
|
14 |
DEMETRIADES A, LADERMAN A J, VON SEGGERN L, et al. Effect of mass addition on the boundary layer of a hemisphere at Mach 6[J]. Journal of Spacecraft and Rockets, 1976, 13(8): 508-509.
|
15 |
SCHNEIDER S P. Hypersonic boundary-layer transition with ablation and blowing[J]. Journal of Spacecraft and Rockets, 2010, 47(2): 225-237.
|
16 |
周伟江, 姜贵庆. 高超声速流中局部构件上质量引射的热防护特性研究[J]. 航空学报, 1999, 20(3): 193-196.
|
|
ZHOU W J, JIANG G Q. Study of heating protection features by mass injection over the local structure in a hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(3): 193-196 (in Chinese).
|
17 |
肖雨,石义雷,粟斯尧. 质量引射对高超声速边界层影响研究[C]∥ 第十九届中国空气动力学物理气体动力学学术交流会.2019:124-126.
|
|
XIAO Y, SHI Y L, SU S Y. Study of mass injection effects on hypersonic boundary layer[C]∥ 19th China Aerodynamics Physics Aerodynamics Academic Exchange Conference.2019:142-126 (in Chinese).
|
18 |
沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展[J]. 空气动力学学报, 2022, 40(6): 1-13.
|
|
SHEN B X, ZENG L, LIU X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2022, 40(6): 1-13 (in Chinese).
|
19 |
YOU Q, YANG X F, ZENG L, et al. Coupled heat transfer characteristics on chemically reacting interface of high-speed aircraft considering wall injection[C]∥ 32nd Congress of the International Council of the Aeronautical Sciences. 2021.
|
20 |
GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-RP-1232[R]. Washington, D.C.: NASA, 1990.
|
21 |
PARK C. Review of chemical-kinetic problems of future NASA missions, I: Earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3): 385-398.
|
22 |
PARK C, HOWE J T, JAFFE R L, et al. Review of chemical-kinetic problems of future NASA missions, II: Mars entries[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 9-23.
|
23 |
BAULCH D L, COBOS C J, COX R A, et al. Evaluated kinetic data for combustion modelling[J]. Journal of Physical and Chemical Reference Data, 1992, 21(3): 411.
|
24 |
FUJITA K, YAMADAT T, ISHII N. Impacts of ablation gas kinetics on hyperbolic entry radiative heating[C]∥ 44th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2006: 14357-14378.
|
25 |
COHEN N, WESTBERG K R. Chemical kinetic data sheets for high-temperature chemical reactions[J]. Journal of Physical and Chemical Reference Data, 1983, 12(3): 531-590.
|
26 |
WARNATZ J. Rate coefficients in the C/H/O system[M]∥GARDINER W C, Jr. Combustion Chemistry. New York: Springer, 1984: 197-360.
|
27 |
COHEN N, WESTBERG K R. Evaluation and compilation of chemical kinetic data[J]. The Journal of Physical Chemistry, 1979, 83(1): 46-50.
|
28 |
GNOFFO P A. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[M]. Washington, D.C.: NASA, Office of Management, Scientific and Technical Information Division, 1989.
|
29 |
SARMA G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences, 2000, 36(3/4): 281-349.
|
30 |
MITCHELTREE R A, GNOFFO P A. Wake flow about a MESUR Mars entry vehicle: AIAA-1994-1958[R]. Reston: AIAA, 1994.
|
31 |
THOMPSON R A, GNOFFO P A. Implementation of a blowing boundary condition in the LAURA code: AIAA-2008-1243[R]. Reston: AIAA, 2008.
|
32 |
MARTIN A, BOYD I D. Modeling of heat transfer attenuation by ablative gases during the stardust reentry[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(3): 450-466.
|