1 |
彭友梅. 苏联/俄罗斯/乌克兰航空发动机的发展[M]. 北京: 航空工业出版社, 2015.
|
|
PENG Y M. History of Soviet Union/Russian/Ukrainian aero engine[M]. Beijing: Aviation Industry Press, 2015 (in Chinese).
|
2 |
LV F J, LI Q, FU G R. Failure analysis of an aero-engine combustor liner[J]. Engineering Failure Analysis, 2010, 17(5): 1094-1101.
|
3 |
BUNKER R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer, 2005, 127(4): 441-453.
|
4 |
贾贝熙, 吕震宙, 雷婧宇. 涡轮冷却叶片寿命可靠性分析参数化仿真平台[J]. 航空学报, 2021, 42(12): 224747.
|
|
JIA B X, LYU Z Z, LEI J Y. Parameterized simulation platform of turbine cooling film blade life reliability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 224747 (in Chinese).
|
5 |
翟维阔, 胡阁, 彭剑勇, 等. 回流燃烧室流动特性试验[J]. 航空动力学报, 2019, 34(10): 2081-2090.
|
|
ZHAI W K, HU G, PENG J Y, et al. Experiment on flow characteristics of a reverse-flow combustor[J]. Journal of Aerospace Power, 2019, 34(10): 2081-2090 (in Chinese).
|
6 |
闫晓军, 张辉,洪杰,等. 典型航空发动机结构对比与分析[M]. 北京: 北京航空航天大学出版社, 2011: 12-17.
|
|
YAN X J, ZHANG H, HONG J, et al. Comparison and analysis of typical aero-engine structure[M]. Beijing: Beihang University Press, 2011: 12-17 (in Chinese).
|
7 |
杨寓全, 刘存良, 张杰, 等. 分腔流量比对涡轮曲端壁表面冷却特性实验[J]. 航空学报, 2021, 42(7): 124399.
|
|
YANG Y Q, LIU C L, ZHANG J, et al. Effect of mass flow ratios on film cooling characteristics of endwall: Experimental study[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124399 (in Chinese).
|
8 |
张振, 陈子聿, 苏欣荣, 等. 基于孔内流动机理的气膜冷却界面模型[J]. 工程热物理学报, 2021, 42(7): 1692-1699.
|
|
ZHANG Z, CHEN Z Y, SU X R, et al. In-hole flow based interface model for film cooling[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1692-1699 (in Chinese).
|
9 |
王进, 孙杰, 赵占明, 等. 基于结构参数分析的姊妹孔气膜冷却性能研究[J]. 航空学报, 2021, 42(7): 124775.
|
|
WANG J, SUN J, ZHAO Z M, et al. Research on film cooling performance of sister hole based on structural parameter analysis[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124775 (in Chinese).
|
10 |
冯珍珍, 田晓晶, 李洋, 等. 某重型燃气轮机燃烧室冲击冷却特性研究[J]. 汽轮机技术, 2020, 62(4): 275-278, 250.
|
|
FENG Z Z, TIAN X J, LI Y, et al. Research of impingement cooling performance for a heavy-duty gas turbine combustor[J]. Turbine Technology, 2020, 62(4): 275-278, 250 (in Chinese).
|
11 |
KREWINKEL R. A review of gas turbine effusion cooling studies[J]. International Journal of Heat and Mass Transfer, 2013, 66: 706-722 (in Chinese).
|
12 |
牛嘉嘉, 刘存良, 刘海涌, 等. 气膜孔与冲击孔面积比和动量比对加力燃烧室双层壁隔热屏综合冷却效率的影响[J]. 推进技术, 2021, 42(3): 601-611.
|
|
NIU J J, LIU C L, LIU H Y, et al. Effects of area ratio of film hole to impingement hole and momentum flux ratio on overall cooling effectiveness of afterburner double wall heat shield[J]. Journal of Propulsion Technology, 2021, 42(3): 601-611 (in Chinese).
|
13 |
戴萍, 林枫. 气膜孔形状对冷却效率影响的数值研究[J]. 动力工程, 2009, 29(2): 117-122.
|
|
DAI P, LIN F. Numerical study on the influence of hole’s shape on film cooling efficiency[J]. Journal of Power Engineering, 2009, 29(2): 117-122 (in Chinese).
|
14 |
YOOSIF A H, AL-KHISHALI K J M, HATEM F F. Film cooling experimental investigation for ramped-conical holes geometry [J]. International Journal of Scientific and Engineering Research, 2013, 10(4): 736-745.
|
15 |
KIM J H, KIM K Y. Performance evaluation of a converging-diverging film-cooling hole[J]. International Journal of Thermal Sciences, 2019, 142: 295-304.
|
16 |
LIU C L, XIE G, ZHU H R, et al. Effect of internal coolant crossflow on the film cooling performance of converging slot hole[J]. International Journal of Thermal Sciences, 2020, 154: 106385.
|
17 |
AZZI A, JUBRAN B A. Numerical modelling of film cooling from converging slot-hole[J]. Heat and Mass Transfer, 2007, 43(4): 381-388.
|
18 |
YAO Y, ZHANG J Z, TAN X M. Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side[J]. International Communications in Heat and Mass Transfer, 2014, 52: 61-72.
|
19 |
DAI H W, ZHANG J H, REN Y Y, et al. Effect of cooling hole configurations on combustion and heat transfer in an aero-engine combustor[J]. Applied Thermal Engineering, 2021, 182: 115664.
|
20 |
刘存良, 谢刚, 朱惠人. 高主流湍流度下倾斜角对圆柱孔气膜冷却特性影响的实验研究[J]. 西安交通大学学报, 2018, 52(1): 47-53, 60.
|
|
LIU C L, XIE G, ZHU H R. Experimental research on the effect of hole-inclined angle on the film cooling characteristics under high mainstream turbulence intensity[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 47-53, 60 (in Chinese).
|
21 |
林宇震, 宋波, 李彬, 等. 不同倾斜角多斜孔壁冷却方式绝热温比研究[J]. 航空学报, 1999, 20(3): 201-204.
|
|
LIN Y Z, SONG B, LI B, et al. Investigation of adiabatic wall effectiveness of the inclined multihole wall film cooling with different angles to the wall surface[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(3): 201-204 (in Chinese).
|
22 |
BEN SIK ALI A, KRIAA W, MHIRI H, et al. Numerical investigations of cooling holes system role in the protection of the walls of a gas turbine combustion chamber[J]. Heat and Mass Transfer, 2012, 48(5): 779-788.
|
23 |
马洪安, 付淑青, 吴宗霖, 等. RP-3航空煤油燃烧特性及其反应机理构建综述[J]. 航空发动机, 2021, 47(1): 25-31.
|
|
MA H A, FU S Q, WU Z L, et al. Review of combustion characteristics and reaction mechanism construction of RP-3 aviation kerosene[J]. Aeroengine, 2021, 47(1): 25-31 (in Chinese).
|
24 |
邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术, 2015, 36(11): 1734-1740.
|
|
DENG H Y, FENG F, WU X S, et al. Characteristics of second atomization for gelled droplet based on extended TAB model[J]. Journal of Propulsion Technology, 2015, 36(11): 1734-1740 (in Chinese).
|
25 |
ZHOU J F, WANG X J, LI J, et al. Numerical investigation on the flow character and film cooling performance of novel merged holes structure[J]. Heat and Mass Transfer, 2019, 55(12): 3575-3587.
|