莫妲1,2,3, 林宇震1,2, 韩啸1,2(
), 马宏宇3, 刘一雄3
收稿日期:2023-05-15
修回日期:2023-06-16
接受日期:2023-07-11
出版日期:2024-04-15
发布日期:2023-07-21
通讯作者:
韩啸
E-mail:han_xiao@buaa.edu.cn
基金资助:
Da MO1,2,3, Yuzhen LIN1,2, Xiao HAN1,2(
), Hongyu MA3, Yixiong LIU3
Received:2023-05-15
Revised:2023-06-16
Accepted:2023-07-11
Online:2024-04-15
Published:2023-07-21
Contact:
Xiao HAN
E-mail:han_xiao@buaa.edu.cn
Supported by:摘要:
氢燃料在航空发动机、空天推进系统和地面燃气轮机等领域的应用可以实现零碳排放,对于缓解全球气候变化和保护环境具有重要意义。但氢燃烧应用仍面临着许多技术挑战,若在传统燃烧室中燃烧氢气将面临回火和氮氧化物排放高的风险,需要探索新的氢燃烧技术和污染物控制措施,以满足氢能迫切发展的需要。微混燃烧技术通过成百上千个微通道结合氢气微喷射,使空气和氢气快速掺混,形成微小尺度火焰,缩短氮气在高温区的驻留时间到毫秒等级,可大幅度降低氮氧化物生成。本文回顾了氢燃料在燃气涡轮发动机中的应用发展历史,梳理了氢气特点、NO x 生成机理、微混燃烧原理、预混燃烧和扩散燃烧的掺混方式和头部结构特点,总结了国内外关于氢燃烧仿真和试验,以及热声不稳定问题的研究进展,讨论了微混燃烧室关键参数对气动热力过程和NO x 生成的影响,归纳了NO x 控制措施,为氢燃烧室工程设计提供理论和试验参考,并对氢燃烧技术未来的发展进行了展望。
中图分类号:
莫妲, 林宇震, 韩啸, 马宏宇, 刘一雄. 氢气微混燃烧技术研究现状和未来展望[J]. 航空学报, 2024, 45(7): 28994.
Da MO, Yuzhen LIN, Xiao HAN, Hongyu MA, Yixiong LIU. Research progress and future prospect of hydrogen micromix combustion technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 28994.
表1
燃料特性对比[31-32]
| Item | H2 | CH4 | Jet-A | JP-4 |
|---|---|---|---|---|
| Molecular weight | 2.016 | 16.04 | 168 | 132 |
| Density/(kg·m-3) | 0.084 | 0.65 | 0.787 | 0.774 |
| Heat of combustion (low)/(MJ·kg-1) | 119.93 | 50.02 | 42 | 42.8 |
| Flammability limits in air/% | 4.0~75.0 | 5.3~15.0 | 0.6~4.7 | 0.8~5.8 |
| Min. ignition energy/MJ | 0.02 | 0.29 | 0.25 | 0.25 |
| Auto ignition temperature/K | 858 | 813 | >500 | >500 |
| Flame temperature/K | 2 318 | 2 148 | 2 200 | 2 200 |
| Burning velocity/(m·s-1) | 2.65~3.25 | 0.37~0.45 | 0.18 | 0.38 |
表2
微混燃烧仿真研究对比
| Organization | Inlet conditions | Turbulence model | Method |
|---|---|---|---|
| University of Illinois[ | 0.1 MPa, 300 K | k-ε | Partially premixed combustion |
| Funke[ | 0.1 MPa, 560 K | realizable k-ε | Eddy Dissipation Concept |
| Cranfield University[ | 1.5 MPa, 600 K | k-ω SST (Shear Stress Transfer) | Flamelet Generated Manifold (FGM) |
| NASA[ | 1.062 MPa, 800 K | Advanced nonlinear k-ε model | Intrinsically Low-Dimensional Manifold (ILDM) |
| Chinese Academy of Sciences[ | 0.1 MPa, 277 K | Standard k-ε Realizable k-ε k-ω SST | Flamelet Generated Manifold (FGM) |
表3
氢燃烧机理对比
| Mechanism | Species | Reaction steps | Advantages |
|---|---|---|---|
| Kéromnès-2013[ | 12 | 33 | Ignition delay time, flame velocity |
| NUIG-NGM-2010[ | 11 | 21 | Ignition delay time |
| ÓConaire-2004[ | 10 | 21 | Ignition delay time |
| Konnov-2008[ | 10 | 33 | Flame velocity |
| Li-2007[ | 11 | 25 | Flame velocity |
| Starik-2009[ | 12 | 26 | JSR |
| GRI3.0-1999[ | 10 | 29 | Flow reactor profiles |
表4
微混燃烧试验研究对比
| Organization | Micro-mixing type | Injector shape and dimension | Hydrogen hole diameter | Inlet conditions | Test rig | NO x |
|---|---|---|---|---|---|---|
| University of Illinois at Urbana-Champaign[ | Premixed | Swirl and bluff body ∅7.5 mm | ∅0.25 mm | Atmosphere 40%H2-60%CH4 | 4×4 Burner array | |
| West Virginia University[ | Non-premixed | Central fuel jet with 3 air lobes 166.4 mm2 | ∅0.99 mm | 1 600 kPa,600 K 100%H2 | 50 Array injectors | 4.4×10-6(15%含氧量) |
| Aachen University Funke[ | Non-premixed | Jet-in-crossflow ∅1~3 mm | ∅0.8 mm | 1 600 kPa,600-700 K 100%H2 | 2 MW Class gas turbine | 35×10-6(15%含氧量) |
| Cranfield University[ | Non-premixed | Jet-in-crossflow Air-hole area<10 mm2 | ∅0.3 mm | 1 500 kPa,600 K 100%H2 | 50 Array injectors | |
| NASA[ | Premixed | LDI∅6.35 mm | ∅0.56 mm | 689.5 kPa,700 K 100%H2 | 7 Array injectors | 10×10-6 |
| Chinese Academy of Sciences[ | Premixed | Multiple confluent turbulent round jets ∅10 mm | ∅2 mm | 101 kPa,288 K 0-60%H2 | 7 Array injectors | 10×10-6(15%含氧量) |
| GE[ | Jet-in-crossflow | MT mixer millimeter scale | Millimeter scale | 1 700 kPa,650 K 66%H2/34%N2 20%N2/80% Air | Full can | 3×10-6(15%含氧量) |
| 1 | Advisory Council for Aeronautics Research in Europe. Flightpath 2050 Europe’s vision for aviation [M]. Luxembourg: Publications Office of the European Union, 2011. |
| 2 | ROLT A M, KYPRIANIDIS K G. Assessment of new aeroengine core concepts and technologies in the EU framework 6 NEWAC programme[C]∥27th International Congress of the Aeronautical Science. Nice: ICAS, 2010. |
| 3 | RALF D B. Low emissions core-engine technologies: Final publishable summary report: Innovative technologies for future gas-turbine core-engines[M]. Dahlewitz: Rolls-Royce Deutschland Ltd & Co KG, 2017. |
| 4 | 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008. |
| LIN Y Z, XU Q H, LIU G E. Cas turbine combustor[M]. Beijing: National Defense Industry Press, 2008 (in Chinese). | |
| 5 | 张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350. |
| ZHANG C, LIN Y Z, XU H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350 (in Chinese). | |
| 6 | 刘静, 肇俊武. 国外民用航空发动机低污染燃烧室的发展[J]. 航空发动机, 2012, 38(4): 11-16. |
| LIU J, ZHAO J W. Development of low emission combustor for foreign civil aeroengine[J]. Aeroengine, 2012, 38(4): 11-16 (in Chinese). | |
| 7 | 于涵, 索建秦, 朱鹏飞, 等. 中心分级贫油直喷(LDI)燃烧室流动及污染排放特性研究[J]. 西北工业大学学报, 2018, 36(5): 816-823. |
| YU H, SUO J Q, ZHU P F, et al. The characteristic of flow field and emissions of a concentric staged lean direct injection(LDI) combustor[J]. Journal of Northwestern Polytechnical University, 2018, 36(5): 816-823 (in Chinese). | |
| 8 | GHALI P F, LEI H R, KHANDELWAL B. A review of modern hydrogen combustor injection technologies for the aerospace sector[M]∥Sustainable Development for Energy, Power, and Propulsion. Singapore: Springer, 2021. |
| 9 | FLOTTAU J. Airbus presents three hydrogen- powered aircraft concepts[J]. Aviation Daily, 2020: 421(55):3-8. |
| 10 | BARRETT S. H2GEAR hydrogen aircraft project for UK[J]. Fuel Cells Bulletin, 2021, 2021(2): 6. |
| 11 | DAILEY J R. Progress in power and safety[J]. Air & Space, 2013, 28(2):2. |
| 12 | PERRY R, SLOOP J L. Liquid hydrogen as a propulsion fuel[J]. Technology and Culture, 1980, 21(1): 136-138. |
| 13 | HENRY M R, PATEL S. High speed container delivery system joint capability technology demonstration: AIAA-2015-2141[R]. Reston: AIAA, 2015. |
| 14 | ROSENBERG Z. Phantom eye UAV makes first flight[J]. Flight International, 2012, 181(5345):21. |
| 15 | VERSTRAETE D. An assessment of the potential of hydrogen fuelled large long-range transport aircraft[C]∥26th International Congress of the Aeronautical Sciences. Anchorage: International Council of the Aeronautical Sciences, 2008. |
| 16 | ONORATO G, PROESMANS P, HOOGREEF M F M. Assessment of hydrogen transport aircraft[J]. CEAS Aeronautical Journal, 2022, 13(4): 813-845. |
| 17 | PROESMANS P J, VOS R. Comparison of future aviation fuels to minimize the climate impact of commercial aircraft: AIAA-2022-3288[R]. Reston: AIAA, 2022. |
| 18 | CIPOLLA V, ZANETTI D, SALEM K A, et al. A parametric approach for conceptual integration and performance studies of liquid hydrogen short-medium range aircraft[J]. Applied Sciences, 2022, 12(14): 6857. |
| 19 | HARTMANN C, NØLAND J K, NILSSEN R, et al. Dual use of liquid hydrogen in a next-generation PEMFC-powered regional aircraft with superconducting propulsion[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4760-4778. |
| 20 | 郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019, 3(2): 12-17. |
| ZHENG M W, YUE W L, SUN J G, et al. Discussion on Chinese large-thrust hydrogen/oxygen rocket engine development[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 12-17 (in Chinese). | |
| 21 | FERNANDEZ-VILLACE V, PANIAGUA G. Numerical model of a variable-combined-cycle engine for dual subsonic and supersonic cruise[J]. Energies, 2013, 6(2): 839-870. |
| 22 | TANATUSGU N, SATO T, NARUO Y, et al. Development study on ATREX engine[J]. Acta Astronautica, 1997, 40(2-8): 165-170. |
| 23 | KYPRIANIDIS K G. Future aero engine designs: An evolving vision[M]∥Advances in Gas Turbine Technology. Croatia: IntechOpen, 2011. |
| 24 | KRAMER D. Hydrogen-Powered aircraft may be getting a lift[J]. Physics Today, 2020, 73(12): 27-29. |
| 25 | PALIES P P. Hydrogen thermal-powered aircraft combustion and propulsion system[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(10): 101007. |
| 26 | NOBLE D, WU D, EMERSON B, et al. Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(4): 041002. |
| 27 | LACY B, ZIMINSKY W, LIPINSKI J, et al. Low emissions combustion system development for the GE energy high hydrogen turbine program[C]∥Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2009. |
| 28 | LANTZ A, COLLIN R, ALDÉN M, et al. Investigation of hydrogen enriched natural gas flames in a SGT-700/800 burner using OH PLIF and chemiluminescence imaging[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(3): 031505. |
| 29 | 昌运鑫, 宋恒, 韩猛, 等. 掺氢功率比对富氢甲烷燃烧振荡特性的影响[J]. 推进技术, 2023, 44(1): 187-200. |
| CHANG Y X, SONG H, HAN M, et al. Effects of hydrogen power ratio on combustion oscillation characteristics of hydrogen-enriched methane[J]. Journal of Propulsion Technology, 2023, 44(1): 187-200 (in Chinese). | |
| 30 | 巨翃宇,梁红侠,索建秦,等 .某航改燃机氢燃料燃烧室污染排放特性研究[J/OL]. 推进技术, (2023-03-15)[2023-04-20].. |
| JU H Y, LIANG H X, SUO J Q, et al. Pollution emission characteristics of hydrogen-fueled combustor of an aero-engine conversion gas turbine[J/OL]. Journal of Propulsion Technology, (2023-03-15)[2023-04-20]. (in Chinese) | |
| 31 | CECERE D, GIACOMAZZI E, INGENITO A. A review on hydrogen industrial aerospace applications[J]. International Journal of Hydrogen Energy, 2014, 39(20): 10731-10747. |
| 32 | WINTER C J. Hydrogen in high-speed air transportation[J]. International Journal of Hydrogen Energy, 1990, 15(8): 579-595. |
| 33 | BRAND J, SAMPATH S, SHUM F, et al. Potential use of hydrogen in air propulsion: AIAA-2003-2879[R]. Reston: AIAA, 2003. |
| 34 | ZELDOVICH J. The oxidation of nitrogen in combustion and explosions[J]. European Physical Journal A. Hadrons and Nuclei, 1946, 21:577-628. |
| 35 | FENIMORE C P. Formation of nitric oxide in premixed hydrocarbon flames[J]. Symposium (International) on Combustion, 1971, 13(1): 373-380. |
| 36 | BAULCH D L, BOWMAN C T, COBOS C J, et al. Evaluated kinetic data for combustion modeling: supplement Ⅱ[J]. Journal of Physical and Chemical Reference Data, 2005, 34(3): 757-1397. |
| 37 | 齐飞, 李玉阳, 苑文浩. 燃烧反应动力学[M]. 北京: 科学出版社, 2021. |
| QI F, LI Y Y, YUAN W H. Combustion reaction kinetics[M]. Beijing: Science Press, 2021 (in Chinese). | |
| 38 | 岑可法, 姚强,骆仲泱,等. 燃烧理论与污染控制[M]. 2版. 北京: 机械工业出版社, 2019. |
| CEN K F, YAO Q, LUO Z Y, et al. Combustion theory and emission control[M]. 2nd ed. Beijing: China Machine Press, 2019 (in Chinese). | |
| 39 | LEFEBVRE A H. Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions[J]. Journal of Aircraft, 1984, 21(11): 887-898. |
| 40 | CHEN R H, DRISCOLL J F. Nitric oxide levels of jet diffusion flames: Effects of coaxial air and other mixing parameters[J]. Symposium (International) on Combustion, 1991, 23(1): 281-288. |
| 41 | 林宏军, 常峰, 程明. GE公司低排放燃烧室发展概述[J]. 航空动力, 2019(1): 31-36. |
| LIN H J, CHANG F, CHENG M. The development of GE’s low emission combustion chamber[J]. Aerospace Power, 2019(1): 31-36 (in Chinese). | |
| 42 | STOUFFER S, BALLAL D, ZELINA J, et al. Development and combustion performance of a high - pressure WSR and TAPS combustor: AIAA-2005-1416[R]. Reston: AIAA, 2005. |
| 43 | BENIM A C, SYED K J. Flashback mechanisms in lean premixed gas turbine combustion[M]. Waltham: Academic Press, 2014. |
| 44 | 莫妲, 林宇震, 马宏宇, 等 . 基于钝体扰流的氢气微混扩散燃烧组织研究[J]. 航空学报, 2024, 45(8): 128928. |
| MO D, LIN Y Z, MA H Y,et al. Investigation on hydrogen micromix diffusive combustion organization based on bluff body disturbance[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128928 (in Chinese). | |
| 45 | FUNKE H H W, BECKMANN N, KEINZ J, et al. 30 years of dry-low-NOx micromix combustor research for hydrogen-rich fuels: An overview of past and present activities[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(7): 071002. |
| 46 | SETHI V, SUN X X, NALIANDA D, et al. Enabling cryogenic hydrogen-based CO2-Free air transport: Meeting the demands of zero carbon aviation[J]. IEEE Electrification Magazine, 2022, 10(2): 69-81. |
| 47 | FUNKE H H W, BOERNER S, KEINZ J, et al. Experimental and numerical characterization of the dry low NOx micromix hydrogen combustion principle at increased energy density for industrial hydrogen gas turbine applications[C]∥Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013. |
| 48 | MAREK C, SMITH T, KUNDU K. Low emission hydrogen combustors for gas turbines using lean direct injection: AIAA-2005-3776[R]. Reston: AIAA, 2005. |
| 49 | ZIEMANN J, SHUM F, MOORE M, et al. Low-NO x combustors for hydrogen fueled aero engine[J]. International Journal of Hydrogen Energy, 1998, 23(4): 281-288. |
| 50 | WEILAND N T, SIDWELL T G, STRAKEY P A. Testing of a hydrogen dilute diffusion array injector at gas turbine conditions[C]∥Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2012. |
| 51 | WEILAND N T, SIDWELL T G, STRAKEY P A. Testing of a hydrogen diffusion flame array injector at gas turbine conditions[J]. Combustion Science and Technology, 2013, 185(7): 1132-1150. |
| 52 | ASAI T, DODO S, KOIZUMI H, et al. Effects of multiple-injection-burner configurations on combustion characteristics for dry low-NO x combustion of hydrogen-rich fuels[C]∥Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2012. |
| 53 | LEE H, HERNANDEZ S, MCDONELL V, et al. Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels[C]∥Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2010. |
| 54 | BHAYARAJU U, HAMZA M, JENG S M. Development of porous injection technology to reduce emissions for dry low NOx combustors: micromixer and swirl injectors[C]∥Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017. |
| 55 | HOLLON B, STEINTHORSSON E, MANSOUR A, et al. Ultra-low emission hydrogen/syngas combustion with a 1.3 MW injector using a micro-mixing lean-premix system[C]∥Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2012. |
| 56 | YORK W D, ZIMINSKY W S, YILMAZ E. Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(2): 022001. |
| 57 | KIM D, JOO S, YOON Y. Effects of fuel line acoustics on the self-excited combustion instability mode transition with hydrogen-enriched laboratory-scale partially premixed combustor[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19956-19964. |
| 58 | RAJASEGAR R, MITSINGAS C M, MAYHEW E K, et al. Development and experimental characterization of metal 3D-printed scalable swirl stabilized mesoscale burner array[C]∥Proceedings of ASME 2017 International Mechanical Engineering Congress and Exposition. New York: ASME, 2018. |
| 59 | CHOI J, RAJASEGAR R, LEE T H, et al. Development and characterization of swirl-stabilized diffusion mesoscale burner array[J]. Applied Thermal Engineering, 2020, 175: 115373. |
| 60 | CHOI J, RAJASEGAR R, MITSINGAS C M, et al. Effect of flame interaction on swirl-stabilized mesoscale burner array performance[J]. Energy, 2020, 192: 116661. |
| 61 | CHOI J, RAJASEGAR R, LEE W, et al. Hydrogen enhancement on a mesoscale swirl stabilized burner array[J]. International Journal of Hydrogen Energy, 2021, 46(46): 23906-23915. |
| 62 | LANDRY-BLAIS A, SIVIĆ S, PICARD M. Micro-mixing combustion for highly recuperated gas turbines: Effects of inlet temperature and fuel composition on combustion stability and NOx emissions[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(9): 091014. |
| 63 | LEI H R, KHANDELWAL B. Investigation of novel configuration of hydrogen micromix combustor for low NOx emission: AIAA-2020-1933[R]. Reston: AIAA, 2020. |
| 64 | LIU X W, SHAO W W, LIU Y, et al. Cold flow characteristics of a novel high-hydrogen Micromix model burner based on multiple confluent turbulent round jets[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5776-5789. |
| 65 | LIU X W, SHAO W W, LIU C, et al. Numerical study of a high-hydrogen micromix model burner using flamelet-generated manifold[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20750-20764. |
| 66 | 王阳墚旭, 陈洁, 马榕谷, 等. 燃氢燃气轮机燃烧室结构改进[J]. 热力发电, 2016, 45(8): 53-57. |
| WANG Y L Y, CHEN J, MA R G, et al. Structure modification for combustor in gas turbine turning to burn hydrogen gas[J]. Thermal Power Generation, 2016, 45(8): 53-57 (in Chinese). | |
| 67 | 田晓晶, 崔玉峰, 房爱兵, 等. 预混段结构对氢燃料旋流预混燃烧诱导涡破碎回火极限影响的数值研究[J]. 中国电机工程学报, 2014, 34(8): 1276-1284. |
| TIAN X J, CUI Y F, FANG A B, et al. Numerical investigation on the effects of mixing zone structure on combustion induced vortex breakdown flashback limits of a swirl-premixed hydrogen flame[J]. Proceedings of the CSEE, 2014, 34(8): 1276-1284 (in Chinese). | |
| 68 | DAVIES T W, BEÉR J M. Flow in the wake of bluff-body flame stabilizers[J]. Symposium (International) on Combustion, 1971, 13(1): 631-638. |
| 69 | FUNKE H H, BORNER S, ROBINSON A, et al. Low NOx H2 combustion for industrial gas turbines of various power ranges[C]∥5th International Gas Turbine Conferenc. Brussels: European Turbine Network, 2010. |
| 70 | HORIKAWA A, OKADA K, UTO T, et al. Application of low NOx micro-mix hydrogen combustion to 2MW class industrial gas turbine combustor[C]∥Proceedings of International Gas Turbine Congress. Tokyo: Gas Turbine Society of Japan, 2019. |
| 71 | FUNKE H H W, BECKMANN N, ABANTERIBA S. An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6978-6990. |
| 72 | FUNKE H H W, BOERNER S, KREBS W, et al. Experimental characterization of low NOx micromix prototype combustors for industrial gas turbine applications[C]∥Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2012. |
| 73 | SUN X X, AGARWAL P, CARBONARA F, et al. Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics[C]∥Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021. |
| 74 | MCCLURE J, ABBOTT D, AGARWAL P, et al. Comparison of hydrogen micromix flame transfer functions determined using RANS and LES[C]∥Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019. |
| 75 | ZGHAL M, SUN X, GAUTHIER P Q, et al. Comparison of tabulated and complex chemistry turbulent-chemistry interaction models with high fidelity large eddy simulations on hydrogen flames[C]∥Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021. |
| 76 | 林宇震, 李林, 张弛, 等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报, 2014, 35(1): 46-57. |
| LIN Y Z, LI L, ZHANG C, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 46-57 (in Chinese). | |
| 77 | 彭瀚, 黄玥, 刘晨, 等. 横向射流影响缓燃向爆震转捩过程的试验研究[J]. 航空学报, 2018, 39(2): 121412. |
| PENG H, HUANG Y, LIU C, et al. Experimental study of effects of fluidic obstacle parameters on deflagration-to-detonation transition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121412 (in Chinese). | |
| 78 | FUNKE H H W, KEINZ J, KUSTERER K, et al. Development and testing of a low NOx micromix combustion chamber for industrial gas turbines[J]. International Journal of Gas Turbine, Propulsion and Power Systems, 2017, 9(1): 27-36. |
| 79 | FUNKE H H W, BECKMANN N, KEINZ J, et al. Numerical and experimental evaluation of a dual-fuel dry-low-NO x micromix combustor for industrial gas turbine applications[C]∥Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017. |
| 80 | SUN X X, ABBOTT D, SINGH A V, et al. Numerical investigation of potential cause of instabilities in a hydrogen micromix injector array[C]∥Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021. |
| 81 | AGARWAL P, SUN X X, GAUTHIER P Q, et al. Injector design space exploration for an ultra-low NO x hydrogen micromix combustion system[C]∥Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019. |
| 82 | MURTHY P. Numerical study of hydrogen micro-mix combustors for aero gas turbine engines[D]. Bedford: Cranfield University, 2010. |
| 83 | KARAKURT A. Parametric investigation of combustion characteristics of hydrogen micromix combustor concept[D]. Bedford: Cranfield University, 2012. |
| 84 | Asanitthong S. Outlet temperature distribution control and heat transfer calculation for a hydrogen micromix combustor[D]. Bedford: Cranfield University, 2014. |
| 85 | 静大亮, 王珂, 陈曦, 等. 燃烧室数值仿真研究现状与发展趋势[J]. 航空动力, 2018(1): 44-47. |
| JING D L, WANG K, CHEN X, et al. The progress on numerical simulation of combustion chamber[J]. Aerospace Power, 2018(1): 44-47 (in Chinese). | |
| 86 | 索建秦, 冯翔洲, 梁红侠, 等. 航空发动机燃烧室研发中的数值仿真探讨[J]. 航空动力, 2021(2): 61-65. |
| SUO J Q, FENG X Z, LIANG H X, et al. Numerical simulation for research and development of aero engine combustor[J]. Aerospace Power, 2021(2): 61-65 (in Chinese). | |
| 87 | 尚守堂, 林宏军, 程明, 等. 航空发动机燃烧室数值仿真技术工程应用分析[J]. 航空动力, 2021(2): 66-69. |
| SHANG S T, LIN H J, CHENG M, et al. Engineering applications of numerical simulation technology for aero engine combustor[J]. Aerospace Power, 2021(2): 66-69 (in Chinese). | |
| 88 | RILEY J J. Review of large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluids Engineering, 2006, 128(2): 209-215. |
| 89 | PITSCH H, DE LAGENESTE L D. Large-eddy simulation of premixed turbulent combustion using a level-set approach[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2001-2008. |
| 90 | FUNKE H H W, BECKMANN N, KEINZ J, et al. Comparison of numerical combustion models for hydrogen and hydrogen-rich syngas applied for dry-low-nox-micromix-combustion[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(8): 081504. |
| 91 | SHIH T H, SMITH T, MAREK C, et al. Numerical study of a single hydrogen/air gas turbine fuel nozzle: AIAA-2003-4249[R]. Reston: AIAA, 2003. |
| 92 | OLM C, ZSÉLY I G, PÁLVÖLGYI R, et al. Comparison of the performance of several recent hydrogen combustion mechanisms[J]. Combustion and Flame, 2014, 161(9): 2219-2234. |
| 93 | KÉROMNÈS A, METCALFE W K, HEUFER K A, et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J]. Combustion and Flame, 2013, 160(6): 995-1011. |
| 94 | HEALY D, KALITAN D M, AUL C J, et al. Oxidation of C1–C5 alkane quinternary natural gas mixtures at high pressures[J]. Energy & Fuels, 2010, 24(3): 1521-1528. |
| 95 | CONAIRE M Ó, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics, 2004, 36(11): 603-622. |
| 96 | KONNOV A A. Remaining uncertainties in the kinetic mechanism of hydrogen combustion[J]. Combustion and Flame, 2008, 152(4): 507-528. |
| 97 | LI J, ZHAO Z W, KAZAKOV A, et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. International Journal of Chemical Kinetics, 2007, 39(3): 109-136. |
| 98 | STARIK A M, TITOVA N S, SHARIPOV A S, et al. Syngas oxidation mechanism[J]. Combustion, Explosion, and Shock Waves, 2010, 46(5): 491-506. |
| 99 | SMITH G P, GOLDEN D M, FRENKLACH M. GRI-Mech 3.0 [S]. Berkeley: University of California, Berkeley, 1999. |
| 100 | 毛茂华,黄春峰,石小江.先进航空发动机燃烧室试验温度激光测量技术[J].测控技术,2010,29(S1):76-83. |
| MAO M H, HUANG C F, SHI X J. Laser temperature measurement technology of advanced aero-engine combustor test[J]. Measurement & Control Technology, 2010, 29(S1):76-83 (in Chinese). | |
| 101 | AN Q, STEINBERG A M. The role of strain rate, local extinction, and hydrodynamic instability on transition between attached and lifted swirl flames[J]. Combustion and Flame, 2019, 199: 267-278. |
| 102 | AN Q, KWONG W Y, GERAEDTS B D, et al. Coupled dynamics of lift-off and precessing vortex core formation in swirl flames[J]. Combustion and Flame, 2016, 168: 228-239. |
| 103 | 付镇柏, 林宇震, 张弛, 等. 中心分级燃烧室进场工况燃油分级方式试验研究[J]. 推进技术, 2014, 35(1): 77-86. |
| FU Z B, LIN Y Z, ZHANG C, et al. Experimental investigation on fuel-staging mode of internally-staged combustor under approach condition[J]. Journal of Propulsion Technology, 2014, 35(1): 77-86 (in Chinese). | |
| 104 | GIANNOULOUDIS A, SUN X, CORSAR M R, et al. On the development of an experimental gig for hydrogen micromix combustion testing[C]∥Proceedings for the 10th European Combusiton Meeting. Naples: The Combustion Institute, 2021. |
| 105 | SCHEFER R W, SMITH T D, MAREK C J. Evaluation of NASA lean premixed hydrogen burner: SAND 2002-8609[R]. Albuquerque: Sandia Corporation, 2003. |
| 106 | HORIKAWA A, OKADA K, KAZARI M, et al. Application of low NOx micro-mix hydrogen combustion to industrial gas turbine combustor and conceptual design[C]∥Proceedings of the International Gas Turbine Congress. Tokyo: European Turbine Network, 2015. |
| 107 | RAYLEIGH J W S, LINDSAY R B. The theory of sound, volume two[M]. New York: Dover Publications, 1945. |
| 108 | LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms and modeling[M]. Reston: American Institute of Aeronautics and Astronautics, 2005. |
| 109 | LIEUWEN T C. Unsteady combustor physics[M]. Cambridge: Cambridge University Press, 2012. |
| 110 | BEITA J, TALIBI M, SADASIVUNI S, et al. Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustors: A review[J]. Hydrogen, 2021, 2(1): 33-57. |
| 111 | 孙晓峰, 张光宇, 王晓宇, 等. 航空发动机燃烧不稳定性预测及控制研究进展[J/OL]. 航空学报, (2023-05-15)[2023-05-20]. . |
| SUN X F, ZHANG G Y, WANG X Y, et al. Research progress in aero-engine combustion instability prediction and control[J/OL]. Acta Aeronautica et Astronautica Sinica, (2023-05-15)[2023-05-20]. (in Chinese). | |
| 112 | LEE T, KIM K T. Combustion dynamics of lean fully-premixed hydrogen-air flames in a mesoscale multinozzle array[J]. Combustion and Flame, 2020, 218: 234-246. |
| 113 | KANG H, KIM K T. Combustion dynamics of multi-element lean-premixed hydrogen-air flame ensemble[J]. Combustion and Flame, 2021, 233: 111585. |
| 114 | 扈学超, 毕笑天, 刘策, 等. 氢燃料微预混火焰燃烧不稳定性实验研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 572-584. |
| HU X C, BI X T, LIU C, et al. Study of combustion characteristics and flame stabilization mechanism of hydrogen-containing micromix jet flames[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(4): 572-584 (in Chinese). | |
| 115 | CAO Z, LYU Y J, PENG J B, et al. Experimental study of flame evolution, frequency and oscillation characteristics of steam diluted micro-mixing hydrogen flame[J]. Fuel, 2021, 301: 121078. |
| 116 | LEFEBVRE A H, BALLAL D R. Gas turbine combustion: Alternative fuels and emissions, third edition[M]. Boca Raton: CRC Press, 2010. |
| 117 | HOLDEMAN J D. Correlation for temperature profiles in the plane of symmetry downstream of a jet injected normal to a crossflow: NASA TN D-6966[R]. Washington, D.C.: NASA, 1972. |
| 118 | HOFERICHTER V, AHRENS D, KOLB M, et al. A reactor model for the NOx formation in a reacting jet in hot cross flow under atmospheric and high pressure conditions[C]∥Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014. |
| 119 | BROADWELL J E, DAHM W J A, MUNGAL M G. Blowout of turbulent diffusion flames[J]. Symposium (International) on Combustion, 1985, 20(1): 303-310. |
| 120 | 莫妲, 尚守堂, 林宇震, 等. 一种氢燃料微尺度非预混燃烧室数值模拟[J]. 航空动力学报, 2023, 38(11): 2701-2710. |
| MO D, SHANG S T, LIN Y Z, et al. Numerical simulation investigation on a hydrogen micromix combustor[J]. Journal of Aerospace Power, 2023, 38(11): 2701-2710 (in Chinese). |
| [1] | 邓期昊, 颜俊明, 陈奔. 基于氢气再循环的PEMFC阳极系统运行特性[J]. 航空学报, 2025, 46(9): 630847-630847. |
| [2] | 黄忆莎, 王晓宇, 秦蕾, 张光宇, 程荣辉, 孙晓峰. 多喷嘴燃烧室三维热声不稳定性分析[J]. 航空学报, 2025, 46(18): 131843-131843. |
| [3] | 李富霖, 陈敏, 唐海龙, 张纪元, 周越, 马静. 考虑环境指标的变循环发动机控制规律设计[J]. 航空学报, 2025, 46(16): 231624-231624. |
| [4] | 莫妲, 林宇震, 马宏宇, 韩啸, 刘一雄. 基于钝体扰流的氢气微混扩散燃烧组织研究[J]. 航空学报, 2024, 45(8): 128928-128928. |
| [5] | 孟晓, 马丹, 林宏军, 陈超. 航空发动机燃烧室热声不稳定的预设性能控制[J]. 航空学报, 2023, 44(17): 128182-128182. |
| [6] | 孙晓峰, 张光宇, 王晓宇, 李磊, 邓向阳, 程荣辉. 航空发动机燃烧不稳定性预测及控制研究进展[J]. 航空学报, 2023, 44(14): 628733-628733. |
| [7] | 陈涛, 徐兴平, 张宏达, 韩省思. 自适应湍流耦合建表燃烧模型的振荡燃烧数值模拟[J]. 航空学报, 2023, 44(14): 628207-628207. |
| [8] | 许成岗;严传俊;王宏基. 平面突扩管道中的湍流流动及预混燃烧计算[J]. 航空学报, 1993, 14(1): 35-42. |
| [9] | 刘陵. 可压流双方程紊流模型及其应用[J]. 航空学报, 1985, 6(5): 438-442. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

