1 |
WEILAND N T, SIDWELL T G, STRAKEY P A. Testing of a hydrogen dilute diffusion array injector at gas turbine conditions[C]∥ Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition.New York:ASME, 2012.
|
2 |
MAREK C, SMITH T, KUNDU K. Low emission hydrogen combustors for gas turbines using lean direct injection :AIAA-2005-3776 [R]. Reston: AIAA, 2005.
|
3 |
ASAI T, DODO S, KOIZUMI H, et al. Effects of multiple-injection-burner configurations on combustion characteristics for dry low-NO x combustion of hydrogen-rich fuels[C]∥ Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition.New York:ASME, 2012.
|
4 |
LEE H, HERNANDEZ S, MCDONELL V, et al. Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels[C]∥ Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York:ASME, 2010.
|
5 |
YORK W D, ZIMINSKY W S, YILMAZ E. Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(2): 022001.
|
6 |
KARAKURT A. Parametric investigation of combustion characteristics of hydrogen micromix combustor concept[D]. Bedford: Cranfield University, 2012: 16-20.
|
7 |
MURTHY P. Numerical study of hydrogen micro-mix combustors for aero gas turbine engines[D]. Bedford: Cranfield University, 2010: 29-33.
|
8 |
孙晓峰, 张光宇, 王晓宇, 等. 航空发动机燃烧不稳定性预测及控制研究进展[J]. 航空学报, 2023,44(13):628733.
|
|
SUN X F, ZHANG G Y, WANG X Y, et al. Research progress in aero-engine combustion instability prediction and control[J]. Acta Aeronautica et Astronautica Sinica, 2023,44(13):628733 (in Chinese).
|
9 |
LIU X W, SHAO W W, LIU Y, et al. Cold flow characteristics of a novel high-hydrogen Micromix model burner based on multiple confluent turbulent round jets[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5776-5789.
|
10 |
王阳墚旭, 陈洁, 马榕谷, 等. 燃氢燃气轮机燃烧室结构改进[J]. 热力发电, 2016, 45(8): 53-57.
|
|
WANG Y L X, CHEN J, MA R G, et al. Structure modification for combustor in gas turbine turning to burn hydrogen gas[J]. Thermal Power Generation, 2016, 45(8): 53-57 (in Chinese).
|
11 |
田晓晶, 崔玉峰, 房爱兵, 等. 预混段结构对氢燃料旋流预混燃烧诱导涡破碎回火极限影响的数值研究[J]. 中国电机工程学报, 2014, 34(8): 1276-1284.
|
|
TIAN X J, CUI Y F, FANG A B, et al. Numerical investigation on the effects of mixing zone structure on combustion induced vortex breakdown flashback limits of a swirl-premixed hydrogen flame[J]. Proceedings of the CSEE, 2014, 34(8): 1276-1284 (in Chinese).
|
12 |
于宗明, 吴鑫楠, 邱朋华, 等. 燃气轮机富氢燃料预混燃烧实验研究[J]. 中国电机工程学报, 2017, 37(5): 1426-1434.
|
|
YU Z M, WU X N, QIU P H, et al. Experimental study on premixed combustion for gas turbines burning high hydrogen fuels[J]. Proceedings of the CSEE, 2017, 37(5): 1426-1434 (in Chinese).
|
13 |
FUNKE H H W, BECKMANN N, KEINZ J, et al. 30 years of dry-low-NO x micromix combustor research for hydrogen-rich fuels—An overview of past and present activities[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(7): 071002.
|
14 |
BOERNER S, FUNKE H H W, HENDRICK P, et al. Development and integration of a scalable low NOx combustion chamber for a hydrogen-fueled aerogas turbine[J]. EUCASS Proceedings Series, 2013, 4: 357-372.
|
15 |
HORIKAWA A, OKADA K, UTO T, et al. Application of low NOx micro-mix hydrogen combustion to 2MW class industrial gas turbine combustor[C]∥Proceedings of International Gas Turbine Congress. Tokyo: Gas Turbine Society of Japan, 2019.
|
16 |
FUNKE H H W, BECKMANN N, ABANTERIBA S. An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6978-6990.
|
17 |
FUNKE H H W, BOERNER S, KEINZ J, et al. Experimental and numerical characterization of the dry low NOx micromix hydrogen combustion principle at increased energy density for industrial hydrogen gas turbine applications[C]∥ Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition.New York:ASME, 2013.
|
18 |
FUNKE H H W, BOERNER S, KREBS W, et al. Experimental characterization of low NOx micromix prototype combustors for industrial gas turbine applications[C]∥ Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York:ASME, 2011.
|
19 |
SUN X X, AGARWAL P, CARBONARA F, et al. Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York:ASME, 2021.
|
20 |
MCCLURE J, ABBOTT D, AGARWAL P, et al. Comparison of hydrogen micromix flame transfer functions determined using RANS and LES[C]∥ Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York:ASME, 2019.
|
21 |
ZGHAL M, SUN X, GAUTHIER P Q, et al. Comparison of tabulated and complex chemistry turbulent-chemistry interaction models with high fidelity large eddy simulations on hydrogen flames[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York:ASME, 2021.
|
22 |
ANASYS. ANSYS reaction design [M]. San Diego: ANSYS Inc, 2016: 28-201.
|
23 |
莫妲, 尚守堂, 林宇震, 等. 一种氢燃料微尺度非预混燃烧室数值模拟[J]. 航空动力学报, 2023, 38(11): 2701-2710.
|
|
MO D, SHANG S T, LIN Y Z, et al. Numerical simulation investigation on a hydrogen micromix combustor[J]. Journal of Aerospace Power, 2023, 38(11): 2701-2710 (in Chinese).
|
24 |
GAUTHIER P Q. Comparison of temperature fields and emissions predictions using both an FGM combustion model, with detailed chemistry, and a simple eddy dissipation combustion model with simple global chemistry[C]∥ Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York:ASME, 2017.
|
25 |
王义乾, 桂南. 第三代涡识别方法及其应用综述[J]. 水动力学研究与进展(A辑), 2019, 34(4): 413-429.
|
|
WANG Y Q, GUI N. A review of the third-generation vortex identification method and its applications[J]. Chinese Journal of Hydrodynamics, 2019, 34(4): 413-429 (in Chinese).
|
26 |
ZHANG Y N, LIU K H, XIAN H Z, et al. A review of methods for vortex identification in hydroturbines[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1269-1285.
|
27 |
LEFEBVRE H. Gas turbine combustion - alternative fuels and emissions [M]. 3rd edition. Boca Raton: CRC Press, 2010: 124-127.
|
28 |
PUDSEY A S, BOYCE R R, WHEATLEY V. Hypersonic viscous drag reduction via multiporthole injector arrays[J]. Journal of Propulsion and Power, 2013, 29(5): 1087-1096.
|
29 |
岑可法, 姚强,骆仲泱,等. 燃烧理论与污染控制[M]. 2版. 北京: 机械工业出版社, 2019: 254-255.
|
|
CEN K F, YAO Q, LUO Z Y,et al. Combustion theory and emission control[M]. 2nd ed. Beijing: China Machine Press, 2019: 254-255 (in Chinese).
|
30 |
王志凯, 陈盛, 范玮. 神经网络宽度对燃烧室排放预测的影响[J]. 航空学报, 2023, 44(5): 126816.
|
|
WANG Z K, CHEN S, FAN W. Effect of neural network width on combustor emission prediction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 126816 (in Chinese).
|
31 |
LIU Y X, CONG P H, WU Y W, et al. Failure analysis and design optimization of shrouded fan blade[J]. Engineering Failure Analysis, 2021, 122: 105208.
|
32 |
GUO Y, LIU Y X, WU Y W, et al. Design optimization and burst speed prediction of a Ti2AlNb blisk[J]. International Journal of Aerospace Engineering, 2021, 2021: 3290518.
|
33 |
LIU Y X, NALIANDA D, MO D, et al. Multi-objective optimization of a three-shaft high bypass ratio engine for EIS2050[C]∥ Proceedings of Global Power & Propulsion Society. 2022.
|
34 |
LIU Y X. Optimization of hybrid electric propulsion system[D]. Bedford: Cranfield University, 2021:44-46.
|
35 |
ZELDOVICH Y. The oxidation of nitrogen in combustion and explosions[J]. Acta Physicochimica Sinica, 1946, 21(3):577-628.
|
36 |
FENIMORE C P. Formation of nitric oxide in premixed hydrocarbon flames[J]. Symposium (International) on Combustion, 1971, 13(1): 373-380.
|
37 |
齐飞, 李玉阳, 苑文浩. 燃烧反应动力学[M]. 北京: 科学出版社, 2021: 1-100.
|
|
QI F, LI Y Y, YUAN W H. Combustion reaction kinetics[M]. Beijing: Science Press, 2021: 1-100 (in Chinese).
|