1 |
DHANUKA S K, TEMME J E, DRISCOLL J F. Unsteady aspects of lean premixed prevaporized gas turbine combustors: Flame-flame interactions[J]. Journal of Propulsion and Power, 2011, 27(3): 631-641.
|
2 |
HEATH C M. Characterization of swirl-venturi lean direct injection designs for aviation gas turbine combustion[J]. Journal of Propulsion and Power, 2014, 30(5): 1334-1356.
|
3 |
CHEN J, LI J Z, YUAN L, et al. Flow and flame characteristics of a RP-3 fuelled high temperature rise combustor based on RQL[J]. Fuel, 2019, 235: 1159-1171.
|
4 |
MONGIA H. TAPS: A fourth generation propulsion combustor technology for low emissions[C]∥ AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003.
|
5 |
WANG Z K, ZENG Z X, LI K, et al. Effect of structure parameters of the flow guide vane on cold flow characteristics in trapped vortex combustor[J]. Journal of Hydrodynamics, Ser B, 2015, 27(5): 730-737.
|
6 |
DENG Y B, WU H W, SU F M. Combustion and exhaust emission characteristics of low swirl injector[J]. Applied Thermal Engineering, 2017, 110: 171-180.
|
7 |
ZHANG C, HUI X, LIN Y Z, et al. Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120-138.
|
8 |
LI J Z, YUAN L, MONGIA H C. Simulation of combustion characteristics in a hydrogen fuelled lean single-element direct injection combustor[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3536-3548.
|
9 |
MEZIANE S, BENTEBBICHE A. Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15610-15621.
|
10 |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.
|
|
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese).
|
11 |
范周伟, 余雄庆, 王朝, 等. 基于深度神经网络的客机总体设计参数敏感性分析[J]. 航空学报, 2021, 42(4): 524353.
|
|
FAN Z W, YU X Q, WANG C, et al. Sensitivity analysis of key design parameters of commercial aircraft using deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524353 (in Chinese).
|
12 |
AGHBASHLO M, PENG W X, TABATABAEI M, et al. Machine learning technology in biodiesel research: A review[J]. Progress in Energy and Combustion Science, 2021, 85: 100904.
|
13 |
KOU J Q, ZHANG W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125: 100725.
|
14 |
ZHOU L, SONG Y T, JI W Q, et al. Machine learning for combustion[J]. Energy and AI, 2022, 7: 100128.
|
15 |
FU J H, YANG R M, LI X, et al. Application of artificial neural network to forecast engine performance and emissions of a spark ignition engine[J]. Applied Thermal Engineering, 2022, 201: 117749.
|
16 |
AZZAM M, AWAD M, ZEAITER J. Application of evolutionary neural networks and support vector machines to model NOx emissions from gas turbines[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1044-1052.
|
17 |
BENDU H, DEEPAK B, MURUGAN S. Application of GRNN for the prediction of performance and exhaust emissions in HCCI engine using ethanol[J]. Energy Conversion and Management, 2016, 122: 165-173.
|
18 |
WANG G Y, AWAD O I, LIU S Y,et al. NOx emissions prediction based on mutual information and back propagation neural network using correlation quantitative analysis[J]. Energy, 2020, 198: 117286.
|
19 |
赵刚, 朱华昕, 李苏辉, 等. 基于数据和神经网络的燃气轮机NOx排放预测与优化[J]. 动力工程学报, 2021, 41(1): 22-27.
|
|
ZHAO G, ZHU H X, LI S H, et al. NOx emission prediction and optimization for gas turbines based on data and neural network[J]. Journal of Chinese Society of Power Engineering, 2021, 41(1): 22-27 (in Chinese).
|
20 |
KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4.
|
21 |
LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166.
|
22 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
23 |
DUFERA T T. Deep neural network for system of ordinary differential equations: Vectorized algorithm and simulation[J]. Machine Learning with Applications, 2021, 5: 100058.
|
24 |
BOUWMANS T, JAVED S, SULTANA M, et al. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[J]. Neural Networks, 2019, 117: 8-66.
|
25 |
CHEN C L P, LIU Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24.
|
26 |
LU Z, PU H, WANG F,et al. The expressive power of neural networks:A view from the width[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017:6231-6239.
|
27 |
FUJITA O. Statistical estimation of the number of hidden units for feedforward neural networks[J]. Neural Networks, 1998, 11(5): 851-859.
|
28 |
SHEELA K G, DEEPA S N. Review on methods to fix number of hidden neurons in neural networks[J]. Mathematical Problems in Engineering, 2013, 2013: 425740.
|
29 |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
|
30 |
BA L M, XIONG X Y, YANG Z B, et al. A novel multi-physics and multi-dimensional model for solid oxide fuel cell stacks based on alternative mapping of BP neural networks[J]. Journal of Power Sources, 2021, 500: 229784.
|
31 |
LIANG W, WANG G W, NING X J, et al. Application of BP neural network to the prediction of coal ash melting characteristic temperature[J]. Fuel, 2020, 260: 116324.
|
32 |
HAN Z Z, MOINUL HOSSAIN M, WANG Y W, et al. Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network[J]. Applied Energy, 2020, 259: 114159.
|
33 |
HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
|
34 |
成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217.
|
|
CHENG K Y, WANG N, SHI W X, et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217 (in Chinese).
|
35 |
纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096.
|
|
JI S L, LI J F, DU T Y, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096 (in Chinese).
|
36 |
PAHLAVAN R. Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production[J]. Energy, 2012, 37(1): 171-176.
|
37 |
LEFEBVRE A H. Gas turbine combustion[M]. New York: Hemisphere Publishing Corporation,1983.
|