首页 >

考虑未知扰动的RLV再入鲁棒容错姿态控制

刘武1,吴云燕1,刘玮2,田明明1,黄天鹏1   

  1. 1. 航空工业西安飞行自动控制研究所
    2.
  • 收稿日期:2022-07-11 修回日期:2022-08-11 出版日期:2022-08-17 发布日期:2022-08-17
  • 通讯作者: 刘武

Re-entry Robust Fault Tolerant Attitude Control for RLVs With Considering Un-known Disturbances

  • Received:2022-07-11 Revised:2022-08-11 Online:2022-08-17 Published:2022-08-17
  • Contact: Wu LIU

摘要: 针对复杂再入环境下的可重复使用运载器姿态控制问题,考虑大气的未知干扰、气动参数建模的不确定性以及可能发生的执行器部分失效故障,基于增量反步法和RBF神经网络设计了姿态角回路和角速率回路的控制器。 基于神经网络良好的未知逼近能力,本文采用RBF神经网络对增量反步法设计过程中的泰勒展开高阶项以及上述未知扰动和故障产生的影响进行逼近估计,并在控制律中进行补偿。经过仿真验证,所设计控制系统能够在未知扰动影响下有效提高指令的跟踪精度,并且对飞行器的本体特性建模依赖较少,具有良好的鲁棒容错能力。

关键词: 可重复使用运载器, 未知扰动, 执行器部分失效, 增量反步控制, 神经网络逼近, 鲁棒容错控制

Abstract: Aiming at the attitude control problem of reusable launch vehicle in complex reentry environment, considering the unknown disturbance of atmosphere, the uncertainty of aerodynamic parameter modeling and the possible local faults of actuator, the controllers of attitude angle loop and angular velocity loop are designed based on incremental backstepping and RBF neural network. Because the neural network has good unknown approximation ability, RBFNN is used to estimate the high-order term of Taylor expansion and the influence of the above unknown disturbances in the IBS design process, and compensate them in the control law. The simulation results show that the designed control system can effectively improve the tracking accuracy of in-structions under the influence of unknown disturbances, and has less dependence on the modeling of aircraft information, so it has good robust fault tolerance.

Key words: reusable launch vehicle, unknown disturbance, partial failure of actuator, incremental backstepping, neural network approxima-tion, robust fault tolerant control

中图分类号: