1 |
严传俊, 范玮. 燃烧学[M]. 3版. 西安: 西北工业大学出版社, 2016: 74.
|
|
YAN C J, FAN W. Combustion[M]. 3rd ed. Xi’an: Northwestern Polytechnical University Press, 2016: 74 (in Chinese).
|
2 |
李连波, 陈雄, 周长省, 等. 旋转爆震发动机与涡轮机的集成[J]. 科学技术与工程, 2020, 20(26): 10551-10556.
|
|
LI L B, CHEN X, ZHOU C S, et al. Integration of rotating detonation engine with turbine[J]. Science Technology and Engineering, 2020, 20(26): 10551-10556 (in Chinese).
|
3 |
FROLOV S M, AKSENOV V S, DUBROVSKII A V, et al. Energy efficiency of a continuous-detonation combustion chamber[J]. Combustion, Explosion, and Shock Waves, 2015, 51(2): 232-245.
|
4 |
计自飞, 张会强, 谢峤峰, 等. 连续旋转爆震涡轮发动机热力过程与性能分析[J]. 清华大学学报(自然科学版), 2018, 58(10): 899-905.
|
|
JI Z F, ZHANG H Q, XIE Q F, et al. Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(10): 899-905 (in Chinese).
|
5 |
TOBITA A, FUJIWARA T, WOLANSKI P. Detonation engine and flying object provided therewith: US20050284127[P]. 2005-12-29.
|
6 |
ZHOU S B, MA Y, LIU F, et al. Effects of a straight guide vane on the operating characteristics of rotating detonation combustor[J]. Acta Astronautica, 2023, 203: 135-145.
|
7 |
ZHOU S B, MA H, LI S, et al. Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20297-20305.
|
8 |
WU Y W, WENG C S, ZHENG Q, et al. Experimental research on the performance of a rotating detonation combustor with a turbine guide vane[J]. Energy, 2021, 218: 119580.
|
9 |
WEI W L, WU Y W, WENG C S, et al. Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane[J]. Defence Technology, 2021, 17(5): 1617-1624.
|
10 |
BACH E, BOHON M, PASCHEREIT C O, et al. Influence of nozzle guide vane orientation relative to RDC wave direction[C]∥Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
|
11 |
BACH E, STATHOPOULOS P, PASCHEREIT C O, et al. Performance analysis of a rotating detonation combustor based on stagnation pressure measurements[J]. Combustion and Flame, 2020, 217: 21-36.
|
12 |
SHEN D W, CHENG M, WU K, et al. Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor[J]. Acta Astronautica, 2022, 193: 90-99.
|
13 |
张成名, 林志勇, 吴倩敏. 连续旋转爆震波与涡轮导向器叶栅相互作用数值研究[J]. 推进技术, 2022, 43(6): 199-207.
|
|
ZHANG C M, LIN Z Y, WU Q M. Numerical study on interaction between continuous rotating detonation wave and turbine stator blades[J]. Journal of Propulsion Technology, 2022, 43(6): 199-207 (in Chinese).
|
14 |
ASLI M, STATHOPOULOS P, PASCHEREIT C O. Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(6): 061011.
|
15 |
BRAUN J, CUADRADO D G, ANDREOLI V, et al. Characterization of an integrated nozzle and supersonic axial turbine with a rotating detonation combustor[C]∥Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
|
16 |
LIU Z, BRAUN J, PANIAGUA G. Performance of axial turbines exposed to large fluctuations[C]∥Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017.
|
17 |
LIU Z, BRAUN J, PANIAGUA G. Characterization of a supersonic turbine downstream of a rotating detonation combustor[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(3): 031501.
|
18 |
SOUSA J, PANIAGUA G, COLLADO-MORATA E. Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor[J]. Applied Energy, 2017, 195: 247-256.
|
19 |
SOUSA J, COLLADO-MORATA E, PANIAGUA G. Design and optimization of supersonic turbines for detonation combustors[J]. Chinese Journal of Aeronautics, 2022, 35(11): 33-44.
|
20 |
SOUSA J, PANIAGUA G. Entropy minimization design approach of supersonic internal passages[J]. Entropy, 2015, 17(8): 5593-5610.
|
21 |
AUNGIER R H. Turbine aerodynamics: Axial-flow and radial-flow turbine design and analysis[M]. New York: ASME, 2006: 143-144.
|
22 |
ZWEIFEL O. The spacing of turbo-machine blading, especially with large angular deflection[J]. Brown Boveri Review, 1945, 32(12): 436-444.
|
23 |
SUN J, ZHOU J, LIU S J, et al. Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions[J]. Acta Astronautica, 2018, 152: 630-638.
|
24 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
25 |
阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490.
|
|
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese).
|
26 |
阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857.
|
|
YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857 (in Chinese).
|
27 |
LIBBY P A. On the prediction of intermittent turbulent flows[J]. Journal of Fluid Mechanics, 1975, 68(2): 273-295.
|
28 |
JIN S, QI L, ZHAO N B, et al. Experimental and numerical research on rotating detonation combustor under non-premixed conditions[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10176-10188.
|
29 |
于维铭. 航空煤油替代燃料火焰传播速度与反应动力学机理研究[D]. 北京: 清华大学, 2014: 53-56.
|
|
YU W M. Study on flame speed and chemical reaction mechanism for alternative fuels of aviation kerosene[D].Beijing: Tsinghua University, 2014: 53-56 (in Chinese).
|
30 |
肖保国, 杨顺华, 赵慧勇, 等. RP-3航空煤油燃烧的详细和简化化学动力学模型[J]. 航空动力学报, 2010, 25(9): 1948-1955.
|
|
XIAO B G, YANG S H, ZHAO H Y, et al. Detailed and reduced chemical kinetic mechanisms for RP-3 aviation kerosene combustion[J]. Journal of Aerospace Power, 2010, 25(9): 1948-1955 (in Chinese).
|
31 |
冯文康, 郑权, 汪小卫, 等. 当量比对煤油-空气两相旋转爆轰波的影响[J]. 兵工学报, 2022, 43(6): 1304-1315.
|
|
FENG W K, ZHENG Q, WANG X W, et al. Effect of equivalent ratio on two-phase rotating detonation wave of kerosene-air[J]. Acta Armamentarii, 2022, 43(6): 1304-1315 (in Chinese).
|
32 |
夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报, 2018, 39(2): 121438.
|
|
XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121438 (in Chinese).
|
33 |
CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, Transactions of the ASME, 2008, 130(7): 078001.
|
34 |
DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12): 1628-1634.
|
35 |
TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4): 997-1008.
|
36 |
LIU X Y, LUAN M Y, CHEN Y L, et al. Propagation behavior of rotating detonation waves with premixed kerosene/air mixtures[J]. Fuel, 2021, 294: 120253.
|
37 |
李冬, 凌文辉, 张义宁, 等. 吸气式旋转爆震发动机热力循环过程分析与性能计算[J]. 推进技术, 2023, 44(4): 2202014.
|
|
LI D, LING W H, ZHANG Y N, et al. Thermodynamic cycle analysis and performance calculation of air-breathing rotating detonation engine[J]. Journal of Propulsion Technology, 2023, 44(4): 2202014 (in Chinese).
|
38 |
ZHANG S J, MA J Z, WANG J P. Theoretical and numerical investigation on total pressure gain in rotating detonation engine[J]. AIAA Journal, 2020, 58(11): 4866-4877.
|
39 |
FERNELIUS M H, GORRELL S E. Predicting efficiency of a turbine driven by pulsing flow[C]∥Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017.
|
40 |
PANIAGUA G, IORIO M C, VINHA N, et al. Design and analysis of pioneering high supersonic axial turbines[J]. International Journal of Mechanical Sciences, 2014, 89: 65-77.
|
41 |
KANTROWITZ A, DONALDSON CD. Preliminary investigation of supersonic diffusers: NACA ACR No. L5D20[R]. Washington, D.C.: NACA, 1945.
|