1 |
杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273.
|
|
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese).
|
2 |
许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展[J]. 航空学报, 2021, 42(12): 625842.
|
|
XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625842 (in Chinese).
|
3 |
PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97.
|
4 |
BERGLUND M, FEDINA E, FUREBY C, et al. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet[J]. AIAA Journal, 2010, 48(3): 540-550.
|
5 |
KERSTEIN A R. A linear-eddy model of turbulent scalar transport and mixing[J]. Combustion Science and Technology, 1988, 60(4-6): 391-421.
|
6 |
陈崇沛, 梁剑寒, 关清帝, 等. 守恒型可压缩一维湍流方法及其在超声速标量混合层中的应用[J]. 航空学报, 2021, 42(S1): 726364.
|
|
CHEN C P, LIANG J H, GUAN Q D, et al. Conservative compressible one-dimensional turbulence method and its application in supersonic scalar mixing layer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726364 (in Chinese).
|
7 |
POPE S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1985, 11(2): 119-192.
|
8 |
PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics, 2021, 425: 109899.
|
9 |
GIVI P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1989, 15(1): 1-107.
|
10 |
POPE S B. Computations of turbulent combustion: progress and challenges[J]. Symposium (International) on Combustion, 1991, 23(1): 591-612.
|
11 |
GAO F, O'BRIEN E E. A large-eddy simulation scheme for turbulent reacting flows[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(6): 1282-1284.
|
12 |
JAISHREE J. Lagrangian and Eulerian probability density function methods for turbulent reacting flows [D]. State College: Pennsylvania State University, 2011.
|
13 |
YANG Y, WANG H F, POPE S B, et al. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1241-1249.
|
14 |
JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large-eddy simulation of turbulent reacting flows [J]. Journal of Fluid Mechanics, 1999, 401: 85-121.
|
15 |
BANAEIZADEH A, LI Z R, JABERI F A. Compressible scalar filtered mass density function model for high-speed turbulent flows[J]. AIAA Journal, 2011, 49(10): 2130-2143.
|
16 |
KOMPERDA J, GHIASI Z, LI D R, et al. Simulation of the cold flow in a ramp-cavity combustor using a DSEM-LES/FMDF hybrid scheme[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
|
17 |
ZHANG L, LIANG J H, SUN M B, et al. An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows[J]. Combustion Theory and Modelling, 2018, 22(1): 1-37.
|
18 |
ZHANG L, LIANG J H, SUN M B, et al. A conservative and consistent scalar filtered mass density function method for supersonic flows[J]. Physics of Fluids, 2021, 33(2): 026101.
|
19 |
VALIDI A, SCHOCK H, JABERI F. Turbulent jet ignition assisted combustion in a rapid compression machine[J]. Combustion and Flame, 2017, 186: 65-82.
|
20 |
RANADIVE H D. High-order compressible formulation for LES/PDF simulations of turbulent reacting flows[D]. Sydney: University of New South Wales, 2019.
|
21 |
CHENG T S, WEHRMEYER J A, PITZ R W, et al. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame[J]. Combustion and Flame, 1994, 99(1): 157-173.
|
22 |
ABDULRAHMAN H, VALIDI A, JABERI F. Large-eddy simulation/filtered mass density function of non-premixed and premixed colorless distributed combustion[J]. Physics of Fluids, 2021, 33(5): 055118.
|
23 |
YOSHIZAWA A, HORIUTI K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows[J]. Journal of the Physical Society of Japan, 1985, 54(8): 2834-2839.
|
24 |
LI P B, LI C Y, WANG H B, et al. Distribution characteristics and mixing mechanism of a liquid jet injected into a cavity-based supersonic combustor[J]. Aerospace Science and Technology, 2019, 94: 105401.
|
25 |
LIU C Y, SUN M B, WANG H B, et al. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor[J]. Aerospace Science and Technology, 2020, 106: 106186.
|
26 |
SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws: NASA/CR-97-206253[R]. Washington, D.C.: NASA, 1997.
|
27 |
GIKHMAN I I, SKOROKHOD A V. The theory of stochastic processes III[M]. Berlin, Heidelberg: Springer, 2007.
|
28 |
WANG H F, POPOV P P, POPE S B. Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations[J]. Journal of Computational Physics, 2010, 229(5): 1852-1878.
|
29 |
EVANS J, SCHEXNAYDER C J, BEACH H. Application of a two-dimensional parabolic computer program to prediction of turbulent reacting flows: NASA-TP-1169[R]. Washington, D.C.: NASA, 1978.
|
30 |
LIU C Y, WANG N, YANG K, et al. Large eddy simulation of a supersonic lifted jet flame in the high-enthalpy coflows[J]. Acta Astronautica, 2021, 183: 233-243.
|
31 |
CONAIRE M Ó, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics, 2004, 36(11): 603-622.
|