1 |
阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490.
|
|
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese).
|
2 |
BALAN A, PARK M A, WOOD S, et al. Verification of anisotropic mesh adaptation for complex aerospace applications[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
|
3 |
张扬, 张来平, 赫新, 等. 基于自适应混合网格的脱体涡模拟[J]. 航空学报, 2016, 37(12): 3605-3614.
|
|
ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation based on adaptive hybrid grids[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3605-3614 (in Chinese).
|
4 |
LISEIKIN V D. The construction of structured adaptive grids—A review[J]. Computational Mathematics and Mathematical Physics, 1996, 36(1): 1-32.
|
5 |
PAN J H, WANG Q, ZHANG Y S, et al. High-order compact finite volume methods on unstructured grids with adaptive mesh refinement for solving inviscid and viscous flows[J]. Chinese Journal of Aeronautics, 2018, 31(9): 1829-1841.
|
6 |
HAMFELDT B F, SALVADOR T. Higher-order adaptive finite difference methods for fully nonlinear elliptic equations[J]. Journal of Scientific Computing, 2018, 75(3): 1282-1306.
|
7 |
唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10): 122894.
|
|
TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122894 (in Chinese).
|
8 |
BIGONI C, HESTHAVEN J S. Adaptive WENO methods based on radial basis function reconstruction[J]. Journal of Scientific Computing, 2017, 72(3): 986-1020.
|
9 |
唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5): 121697.
|
|
TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121697 (in Chinese).
|
10 |
陈浩, 袁先旭, 王田天, 等. 国家数值风洞(NNW)工程中的黏性自适应笛卡尔网格方法研究进展[J]. 航空学报, 2021, 42(9): 625732.
|
|
CHEN H, YUAN X X, WANG T T, et al. Advances in viscous adaptive Cartesian grid methodology of NNW Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625732 (in Chinese).
|
11 |
陈浩, 华如豪, 袁先旭, 等. 基于自适应笛卡尔网格的飞翼布局流动模拟[J]. 航空学报, 2022, 43(8): 125674.
|
|
CHEN H, HUA R H, YUAN X X, et al. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125674 (in Chinese).
|
12 |
CHO M, JUN S. r-Adaptive mesh generation for shell finite element analysis[J]. Journal of Computational Physics, 2004, 199(1): 291-316.
|
13 |
AMEUR F BEN, BALIS J, VANDENHOECK R, et al. R-adaptive algorithms for supersonic flows with high-order flux reconstruction methods[J]. Computer Physics Communications, 2022, 276: 108373.
|
14 |
LI W Z, LUO H, PANDARE A, et al. A p-adaptive discontinuous Galerkin method for compressible flows using charm++[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
|
15 |
BASSI F, BOTTI L, COLOMBO A, et al. A p-adaptive matrix-free discontinuous Galerkin method for the implicit LES of incompressible transitional flows[J]. Flow, Turbulence and Combustion, 2020, 105(2): 437-470.
|
16 |
XIA M T, SHAO S H, CHOU T. A frequency-dependent p-adaptive technique for spectral methods[J]. Journal of Computational Physics, 2021, 446: 110627.
|
17 |
PANOURGIAS K, EKATERINARIS J A. Three-dimensional discontinuous Galerkin h/p adaptive numerical solutions for compressible flows[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
|
18 |
NTOUKAS G, MANZANERO J, RUBIO G, et al. An entropy-stable p-adaptive nodal discontinuous Galerkin for the coupled Navier-Stokes/Cahn-Hilliard system[J]. Journal of Computational Physics, 2022, 458: 111093.
|
19 |
任炯, 王刚. 一种在网格内部捕捉间断的Walsh函数有限体积方法[J]. 力学学报, 2021, 53(3): 773-788.
|
|
REN J, WANG G. A finite volume method with Walsh basis functions to capture discontinuity inside grid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 773-788 (in Chinese).
|
20 |
REN J, WANG G. A Walsh-function-based finite volume method to capture discontinuity inside grid cell[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
|
21 |
GNOFFO P A. Global series solutions of nonlinear differential equations with shocks using Walsh functions[J]. Journal of Computational Physics, 2014, 258: 650-688.
|
22 |
WALSH J L. A closed set of normal orthogonal functions[J]. American Journal of Mathematics, 1923, 45 (1): 5-24.
|
23 |
REN J, WANG G, MA B P. Multidimensional extension and application of entropy-consistent scheme for navier-stokes equations on unstructured grids[C]∥ 23rd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2017.
|
24 |
ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks[J]. Journal of Computational Physics, 2009, 228(15): 5410-5436.
|
25 |
REN J, WANG G, MA M S. A group of CFL-dependent flux-limiters to control the numerical dissipation in Multi-stage unsteady calculation[J]. Journal of Scientific Computing, 2019, 81(1): 186-216.
|
26 |
GOTTLIEB S, KETCHESON D I, SHU C W. High order strong stability preserving time discretizations[J]. Journal of Scientific Computing, 2009, 38(3): 251-289.
|
27 |
SHI J, ZHANG Y T, SHU C W. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics, 2003, 186(2): 690-696.
|
28 |
LIU Y L, ZHANG W W, ZHENG X B. An accuracy preserving limiter for the high-order discontinuous Galerkin method on unstructured grids[J]. Computers & Fluids, 2019, 192: 104253.
|