航空学报 > 2023, Vol. 44 Issue (8): 127444-127444   doi: 10.7527/S1000-6893.2022.27444

自适应Walsh函数有限体积方法

任炯, 王刚(), 胡国栋, 石晓露   

  1. 西北工业大学 航空学院,西安  710072
  • 收稿日期:2022-05-15 修回日期:2022-07-01 接受日期:2022-07-27 出版日期:2023-04-25 发布日期:2022-08-08
  • 通讯作者: 王刚 E-mail:wanggang@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(U2141254)

Adaptive finite volume method with Walsh basis functions

Jiong REN, Gang WANG(), Guodong HU, Xiaolu SHI   

  1. School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China
  • Received:2022-05-15 Revised:2022-07-01 Accepted:2022-07-27 Online:2023-04-25 Published:2022-08-08
  • Contact: Gang WANG E-mail:wanggang@nwpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U2141254)

摘要:

Walsh函数有限体积方法(FVM-WBF)是一种具备网格内部捕捉间断能力的新型数值方法。全局增加网格单元内Walsh基函数的数目可以有效提升FVM-WBF方法的数值分辨率,但同时会带来计算量的急剧增加。为了平衡FVM-WBF方法分辨率和计算效率之间的矛盾,利用Walsh基函数的数值特性,提出了一种结合自适应策略的Walsh函数有限体积方法。该方法根据流场特征动态调整网格单元内的Walsh基函数数目,仅在流场结构变化剧烈的局部区域使用足量的基函数,避免全局性增加基函数所引发的计算量爆发式增长。选取二维非定常双马赫反射、Rayleigh-Taylor不稳定性问题和定常NACA0012翼型绕流为算例,将新发展的自适应Walsh函数有限体积方法与原始Walsh函数有限体积方法进行对比测试。理论分析和数值结果表明,Walsh函数有限体积方法“天然”具备便捷的自适应潜能,能够方便地依据流场特征动态地实现Walsh基函数数目的优化配置,实现高分辨率和高效率的双赢。

关键词: 计算流体力学, 有限体积方法, Walsh函数, 自适应方法, 间断捕捉

Abstract:

The Finite Volume Method with Walsh Basis Functions (FVM-WBF method) is a novel numerical method with the ability to capture discontinuity inside grids. While globally increasing the number of Walsh basis functions can effectively improve the numerical resolution, it also leads to a large increase in computational costs. To balance the resolution and the computational efficiency of the FVM-WBF method, an adaptive finite volume method with Walsh basis functions is proposed according to the numerical properties of the Walsh basis functions. The proposed method dynamically adjusts the number of Walsh basis functions in the grid based on the features of the flow field. Sufficient basis functions are employed only in the local region where the flow field structure changes dramatically, so as to avoid the explosive growth of the computation caused by the global increase of the basis functions. Several cases are selected to test the adaptive FVM-WBF method in comparison with the original FVM-WBF method, including two-dimensional Double Mach reflection problem, Rayleigh-Taylor instability problem and the flow over NACA0012 airfoil. Theoretical analysis and numerical results show that the adaptive FVM-WBF method has the inherent capability of convenient dynamic adaptation, and a balance between high resolution and high efficiency in the numerical simulations has been achieved by intelligently adapting the number of Walsh basis functions in the flow field.

Key words: computational fluid dynamics, finite volume method, Walsh functions, adaptive method, discontinuous capture

中图分类号: