1 |
冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术[J]. 空军工程大学学报(自然科学版), 2019, 20(3): 8-13.
|
|
FENG J F, HU J H, QI D. Study on development needs and key technologies of air-water trans-media vehicle[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(3): 8-13 (in Chinese).
|
2 |
HRUBES J D. High-speed imaging of supercavitating underwater projectiles[J].Experiments in Fluids, 2001, 30(1): 57-64.
|
3 |
THORODDSEN S T, ETOH T G, TAKEHARA K, et al. Impact jetting by a solid sphere[J]. Journal of Fluid Mechanics, 2004, 499: 139-148.
|
4 |
TRUSCOTT T T, EPPS B P, BELDEN J. Water entry of projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46: 355-378.
|
5 |
王永虎, 石秀华. 入水冲击问题研究的现状与进展[J]. 爆炸与冲击, 2008, 28(3): 276-282.
|
|
WANG Y H, SHI X H. Review on research and development of water-entry impact problem[J]. Explosion and Shock Waves, 2008, 28(3): 276-282 (in Chinese).
|
6 |
秦洪德, 赵林岳, 申静. 入水冲击问题综述[J]. 哈尔滨工业大学学报, 2011, 43(): 152-157.
|
|
QIN H D, ZHAO L Y, SHEN J. Review of water entry problem[J]. Journal of Harbin Institute of Technology, 2011, 43(S1): 152-157 (in Chinese).
|
7 |
王瑞, 赵博伟, 刘珂, 等. 高速射弹入水稳定性研究现状与分析[J]. 火炮发射与控制学报, 2018, 39(2): 99-104.
|
|
WANG R, ZHAO B W, LIU K, et al. Research status of the stability of high-speed projectile’s water-entry process and its analysis[J]. Journal of Gun Launch and Control, 2018, 39(2):99-104 (in Chinese).
|
8 |
WORTHINGTON A M, COLE R S. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London Series A: Containing Papers of a Mathematical or Physical Character, 1897, 189: 137-148.
|
9 |
WORTHINGTON A M. A study of splashes[M]. London: Longmans, Green, and Co., 1908.
|
10 |
MAY A, WOODHULL J C. Drag coefficients of steel spheres entering water vertically[J]. Journal of Applied Physics, 1948, 19(12): 1109-1121.
|
11 |
MAY A. Effect of surface condition of a sphere on its water-entry cavity[J]. Journal of Applied Physics, 1951, 22(10): 1219-1222.
|
12 |
MAY A, WOODHULL J C. The virtual mass of a sphere entering water vertically[J]. Journal of Applied Physics, 1950, 21(12): 1285-1289.
|
13 |
MAY A. Vertical entry of missiles into water[J]. Journal of Applied Physics, 1952, 23(12): 1362-1372.
|
14 |
GILBARG D, ANDERSON R A. Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water[J]. Journal of Applied Physics, 1948, 19(2): 127-139.
|
15 |
ABELSON H I. A prediction of water-entry cavity shape[J]. Journal of Basic Engineering, 1971, 93(4): 501-503.
|
16 |
SHI H H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry[J]. Journal of Fluids Engineering, 2000, 122(4): 806-810.
|
17 |
SHI H H, MAKOTO K. Underwater acoustics and cavitating flow of water entry[J].Acta Mechanica Sinica, 2004, 20(4): 374-382.
|
18 |
SHI H H, TAKAMI T. Hydrodynamic behavior of an underwater moving body after water entry[J].Acta Mechanica Sinica, 2001, 17(1): 35-44.
|
19 |
BODILY K G, CARLSON S J, TRUSCOTT T T. The water entry of slender axisymmetric bodies[J]. Physics of Fluids, 2014, 26(7): 72108.
|
20 |
王瑞琦, 黄振贵, 郭则庆, 等. 不同头型弹丸低速垂直入水实验研究[J]. 兵器装备工程学报, 2017, 38(11):45-50.
|
|
WANG R Q, HUANG Z G, GUO Z Q, et al. Experimental study of low speed vertical water entry with different head shape projectiles[J]. Journal of Sichuan Ordnance, 2017, 38(11): 45-50 (in Chinese).
|
21 |
路丽睿, 魏英杰, 王聪, 等. 不同头型射弹低速倾斜入水空泡及弹道特性试验研究[J]. 兵工学报, 2018, 39(7):1364-1371.
|
|
LU L R, WEI Y J, WANG C, et al. Experimental investigation into the cavity and ballistic characteristics of low-speed oblique water entry of revolution body[J]. Acta Armamentarii, 2018, 39(7):1364-1371 (in Chinese).
|
22 |
李利剑, 张敏弟, 王占莹, 等. 入水角度对球体高速入水空泡特性影响研究[J]. 装备环境工程, 2023, 20(3): 1-14.
|
|
LI L J, ZHANG M D, WANG Z Y, et al. Effects of water entry angle on cavity characteristics of high-speed sphere[J]. Equipment Environmental Engineering, 2023, 20(3): 1-14 (in Chinese).
|
23 |
BATTISTIN D, IAFRATI A. Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies[J]. Journal of Fluids and Structures, 2003, 17(5): 643-664.
|
24 |
JOHN ABRAHAM T S. Velocity and density effect on impact force during water entry of sphere[J]. Journal of Geophysics and Remote Sensing, 2014, 3(3): 1000129.
|
25 |
BELDEN J, HURD R C, JANDRON M A, et al. Elastic spheres can walk on water[J]. Nature Communications, 2016, 7: 10551.
|
26 |
宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟[J]. 北京理工大学学报, 2017, 37(7): 661-666, 671.
|
|
SONG W C, WANG C, WEI Y J, et al. Numerical simulation of the flow field characteristics of low speed oblique water entry of revolution body[J]. Transactions of Beijing Institute of Technology, 2017, 37(7): 661-666, 671 (in Chinese).
|
27 |
宋武超, 王聪, 魏英杰, 等. 回转体倾斜入水空泡及弹道特性实验[J]. 北京航空航天大学学报, 2016, 42(11): 2386-2394.
|
|
SONG W C, WANG C, WEI Y J, et al. Experiment of cavity and trajectory characteristics of oblique water entry of revolution bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11): 2386-2394 (in Chinese).
|
28 |
方城林, 魏英杰, 王聪, 等. 不同头型高速射弹垂直入水数值模拟[J]. 哈尔滨工业大学学报, 2016, 48(10): 77-82.
|
|
FANG C L, WEI Y J, WANG C, et al. Numerical simulation of vertical high-speed water entry process of projectiles with different heads[J]. Journal of Harbin Institute of Technology, 2016, 48(10): 77-82 (in Chinese).
|
29 |
张佳悦, 李达钦, 吴钦, 等. 航行体回收垂直入水空泡流场及水动力特性研究[J]. 力学学报, 2019, 51(3):803-812.
|
|
ZHANG J Y, LI D Q, WU Q, et al. Numerical investigation on cavity structures and hyrodynamics of the vehicle during vertical water-entry[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3):803-812 (in Chinese).
|
30 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|