[1] MYRABO L. Solar-powered global aerospace transportation[C]//13th International Electric Propulsion Conference. Reston: AIAA, 1978. [2] MYRABO L, RAIZER Y. Laser-induced air spike for advanced transatmospheric vehicles[C]//25th Plasmadynamics and Lasers Conference. Reston: AIAA, 1994. [3] BRACKEN R, MYRABO L, NAGAMATSU H, et al. Experimental investigation of an electric arc air-spike in Mach 10 flow with preliminary drag measurements[C]//32nd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2001. [4] MINUCCI M A S, TORO P G P, OLIVEIRA A C, et al. Laser-supported directed-energy "air spike" in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 51-57. [5] SALVADOR I I, MINUCCI M A S, TORO P G P, et al. Surface heat flux and pressure distribution on a hypersonic blunt body with DEAS[C]//AIP Conference Proceedings, 2008, 997(1): 367-378. [6] KIM J H, MATSUDA A, SASOH A. Interactions among baroclinically-generated vortex rings in building up an acting spike to a bow shock layer[J]. Physics of Fluids, 2011, 23(2): 021703. [7] WU Y, LI Y, ZHANG P, et al. Experimental investigation on atmosphere plasma actuation based flow separation suppression[C]//The 2nd China Aeronautical Science and Technology Youth Science Forum. Beijing: Chinese Society of Aeronautics and Astronautics, 2006: 200-204 (in Chinese). 吴云, 李应红, 张朴, 等. 大气压等离子体激励抑制分离流动的试验研究[C]//第二届中国航空学会青年科技论坛文集. 北京: 中国航空学会, 2006: 200-204. [8] ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. [9] NIE W S, CHENG Y F, CHE X K. A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics, 2012, 42(6): 722-734 (in Chinese). 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734. [10] KNIGHT D. Survey of aerodynamic drag reduction at high speed by energy deposition[J]. Journal of Propulsion and Power, 2008, 24(6): 1153-1167. [11] ZHELTOVODOV A, PIMONOV E, KNIGHT D. Energy deposition influence on supersonic flow over axisymmetric bodies[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. [12] HONG Y J, WANG D K, LI Q, et al. Interaction of single-pulse laser energy with bow shock in hypersonic flow[J]. Chinese Journal of Aeronautics, 2014, 27(2): 241-247. [13] ERDEM E, YANG L C, KONTIS K. Drag reduction studies by steady energy deposition at Mach 5[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. [14] MA N N, CUI C Y, WANG D K, et al. Study on the effects of single pulse energy deposition position on pressure evolution of the Type IV shock interaction[C]//2nd International Conference on Aerospace Engineering and Information Technology, 2012: 511-516 (in Chinese). 马楠楠, 崔村燕, 王殿恺, 等. 单脉冲能量沉积位置对Ⅳ型激波干扰压力场演化过程的影响研究[C]//第二届航空航天工程与信息技术国际会议, 2012: 511-516. [15] KANDALA R, CANDLER G V. Numerical studies of laser-induced energy deposition for supersonic flow control[J]. AIAA Journal, 2004, 42(11): 2266-2275. [16] RAǐZER Y P. Breakdown and heating of gases under the influence of a laser beam[J]. Soviet Physics Uspekhi, 1966, 8(5): 650-673. [17] LAUX C, YU L, PACKAN D, et al. Ionization mechanisms in two-temperature air plasmas[C]//30th Plasmadynamic and Lasers Conference. Reston: AIAA, 1999. [18] ADELGREN R, ELLIOT G, KNIGHT D, et al. Energy deposition in supersonic flows[C]//39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. [19] ALBERTI A, MUNAFÒ A, KOLL M, et al. Laser-induced non-equilibrium plasma kernel dynamics[J]. Journal of Physics D: Applied Physics, 2020, 53(2): 025201. [20] ALBERTI A, MUNAFÒ A, PANTANO C, et al. Self-consistent computational fluid dynamics of supersonic drag reduction via upstream-focused laser-energy deposition[J]. AIAA Journal, 2020, 59(4): 1214-1224. [21] DORS I, PARIGGER C, LEWIS J. Fluid dynamics effects following laser-induced optical breakdown[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. [22] CHEN Y LA. Laser-induced gas breakdown and ignition[D]. Tennessee: The University of Tennessee, 1998: 53-59. [23] FU N, XU D G, ZHANG G Z, et al. Exploring femtosecond laser plasma to reduce drag of hypersonic vehicle[J]. Chinese Journal of Lasers, 2015, 42(2): 0202003 (in Chinese). 付宁, 徐德刚, 张贵忠, 等. 飞秒激光等离子体在高超声速飞行器减阻中的应用[J]. 中国激光, 2015, 42(2): 0202003. [24] BLETZINGER P, GANGULY B N, VAN WIE D, et al. Plasmas in high speed aerodynamics[J]. Journal of Physics D: Applied Physics, 2005, 38(4): R33-R57. [25] ADELGREN R G, YAN H, ELLIOTT G S, et al. Control of edney IV interaction by pulsed laser energy deposition[J]. AIAA Journal, 2005, 43(2): 256-269. [26] SAKAI T, SEKIYA Y, MORI K, et al. Interaction between laser-induced plasma and shock wave over a blunt body in a supersonic flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(5): 605-617. [27] GEORGIEVSKⅡ P Y, LEVIN V A. Unsteady interaction of a sphere with atmospheric temperature inhomogeneity at supersonic speed[J]. Fluid Dynamics, 1993, 28(4): 568-574. [28] OGINO Y, OHNISHI N, TAGUCHI S, et al. Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition[J]. Physics of Fluids, 2009, 21(6): 066102. [29] BILLIG F S. Shock-wave shapes around spherical-and cylindrical-nosed bodies[J]. Journal of Spacecraft and Rockets, 1967, 4(6): 822-823. [30] REYNOLDS W C, PAREKH D E, JUVET P J D, et al. Bifurcating and blooming jets[J]. Annual Review of Fluid Mechanics, 2003, 35: 295-315. [31] ANDERSON K, KNIGHT D D. Interaction of heated filaments with a blunt cylinder in supersonic flow[J]. Shock Waves, 2011, 21(2): 149-161. [32] WANG D K, SHI J L, QING Z X. Numerical study of shock wave drag reduction mechanism by nanosecond-pulse laser energy deposition[J]. Infrared and Laser Engineering, 2021, 50(3): 3788/IRLA20200253 (in Chinese). 王殿恺, 石继林, 卿泽旭. 纳秒脉冲激光能量沉积激波减阻机理数值研究[J]. 红外与激光工程, 2021, 50(3): 3788/IRLA20200253. [33] HE G. Investigation on the three-dimensional swept impinging oblique shock/turbulent boundary layer interactions[D]. Changsha: National University of Defense Technology, 2018: 1-3 (in Chinese). 何刚. 三维后掠激波/湍流边界层干扰研究[D]. 长沙: 国防科技大学, 2018: 1-3. [34] WANG D K, HONG Y J, REN Y X, et al. Flow control method of type IV interaction with high rated laser energy[J]. Journal of Propulsion Technology, 2015, 36(10): 1459-1464 (in Chinese). 王殿恺, 洪延姬, 任玉新, 等. 高重频激光控制IV型激波干扰方法研究[J]. 推进技术, 2015, 36(10): 1459-1464. [35] YAN H, GAITONDE D. Effect of energy pulse on edney IV interaction[C]//3rd AIAA Flow Control Conference. Reston: AIAA, 2006. [36] ZHAN P G. Innovative research on drag and heat reduction concept of blunt body abroad[J]. Aerodynamic Missile Journal, 2015(3): 14-17 (in Chinese). 战培国. 国外钝头体减阻降热概念创新研究[J]. 飞航导弹, 2015(3): 14-17. [37] RIGGINS D, TAYLOR T, KHAMOOSHI A. Innovative concepts for large-scale drag and heat transfer reductions in high-speed flows[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. [38] SHNEYDER M, MACHERET S, ZAIDI S, et al. Steady and unsteady supersonic flow control with energy addition[C]//34th AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2003. [39] WANG J X, HONG Y J, LI Q, et al. Research of the influence of repetitive-rate of laser energy reducing wave drag for hypersonic craft[J]. Science Technology and Engineering, 2013, 13(23): 6956-6959 (in Chinese). 王金霞, 洪延姬, 李倩, 等. 激光重复频率对减小高超声速飞行器波阻的影响研究[J]. 科学技术与工程, 2013, 13(23): 6956-6959. [40] WANG D K, QING Z X, LI Q, et al. Selection method of key parameters for wave drag reduction by high frequency laser energy[J]. Journal of Propulsion Technology, 2017, 38(5): 1188-1193 (in Chinese). 王殿恺, 卿泽旭, 李倩, 等. 高重频激光减阻的关键因素选择方法研究[J]. 推进技术, 2017, 38(5): 1188-1193. [41] SKVORTSOV V, KUNETSOV Y. Consequences of heat concept of electrical discharge influence on aerodynamic characteristics for comparative experiments in aerodynamics[C]//32nd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2001. [42] RIGGINS D, NELSON H, JOHNSON E. Blunt body wave drag reduction using focused energy deposition[C]//8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1998. [43] FANG J, HONG Y J, LI Q, et al. Numerical analysis of supersonic drag reduction with repetitive laser energy deposition[J]. High Power Laser and Particle Beams, 2011, 23(5): 1158-1162 (in Chinese). 方娟, 洪延姬, 李倩, 等. 高重复频率激光能量沉积减小超声速波阻的数值研究[J]. 强激光与粒子束, 2011, 23(5): 1158-1162. [44] ERDEM E, KONTIS K, YANG L. Steady energy deposition at Mach 5 for drag reduction[J]. Shock Waves, 2013, 23(4): 285-298. [45] HONG Y J, LI Q, FANG J, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 93-101 (in Chinese). 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1): 93-101. [46] WEN M, WANG D K, WANG W D. Influence of key parameters on the interaction of the laser induced plasma hot core and shock wave[J]. Infrared and Laser Engineering, 2019, 48(4): 95-101 (in Chinese). 文明, 王殿恺, 王伟东. 关键参数对激光等离子体热核与激波相互作用过程的影响规律[J]. 红外与激光工程, 2019, 48(4): 95-101. [47] KOLESNICHENKO Y, BROVKIN V, AZAROVA O, et al. Microwave energy release regimes for drag reduction in supersonic flows[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. [48] KOLESNICHENKO Y, BROVKIN V, LASHKOV V, et al. MW energy deposition for aerodynamic application[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. [49] GEORGIEVSKY P Y, LEVIN V. Bow shock waves structures dynamics for pulse-periodic energy input into a supersonic flow[C]//The 5th International Workshop on Magneto-and Plasma Aerodynamics for Aerospace Applications, 2003: 228-233. [50] KIM J H, MATSUDA A, SAKAI T, et al. Drag reduction with high-frequency repetitive side-on laser pulse energy depositions[C]//40th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2010. [51] KIM J H, MATSUDA A, SAKAI T, et al. Wave drag reduction with acting spike induced by laser-pulse energy depositions[J]. AIAA Journal, 2011, 49(9): 2076-2078. [52] SAKAI T. Supersonic drag performance of truncated cones with repetitive energy depositions[J]. International Journal of Aerospace Innovations, 2009, 1(1): 31-43. [53] TRETYAKOV P, GARANIN A, KRAYNEV V, et al. Investigation of local laser energy release influence on supersonic flow by methods of aerophysical experiments[C]//Proceedings of the 8th International Conference on Methods in Aerophysical Research. Novosibirsk: Russian Academy of Sciences, Siberian Division, 1996: 200-204. [54] WANG D Q, XU C H, JIANG C W, et al. Research progress of hypersonic flow control technology[J]. Aerodynamic Missile Journal, 2015(9): 24-30 (in Chinese). 王得强, 许晨豪, 蒋崇文, 等. 高超声速流动控制技术研究进展[J]. 飞航导弹, 2015(9): 24-30. [55] LU J X. Study on compact nanosecond laser[D]. Shenzhen: Shenzhen University, 2018: 41-42 (in Chinese). 卢建新. 小型纳秒激光器的研制[D]. 深圳: 深圳大学, 2018: 41-42. [56] MALKA V, FAURE J, GAUDUEL Y A, et al. Principles and applications of compact laser-plasma accelerators[J]. Nature Physics, 2008, 4(6): 447-453. [57] TIAN H B, WANG L. Analysis of output characteristics of Nd: YVO4 and Nd: YAG all-solid-state laser[J]. Laser & Optronics Progress, 2005, 42(3): 15-18 (in Chinese). 田宏宾, 王丽. Nd: YVO4和Nd: YAG全固态激光器输出特性的比较分析[J]. 激光与光电子学进展, 2005, 42(3): 15-18. [58] PHAM H S, SHODA T, TAMBA T, et al. Impacts of laser energy deposition on flow instability over double-cone model[J]. AIAA Journal, 2017, 55(9): 2992-3000. [59] GU Y P. New development trend of electronic countermeas-ures equipment abroad[J]. Electronics World, 2001(8): 4-6 (in Chinese). 顾耀平. 国外电子对抗装备发展新动向[J]. 电子世界, 2001(8): 4-6. [60] XUAN Y, WANG W H, CHENG D S, et al. Research status and development trend of airborne high power microwave weapons[J]. Winged Missiles Journal, 2008(6): 32-34 (in Chinese). 宣源, 汪卫华, 程德胜, 等. 机载高功率微波武器研究现状与发展趋势[J]. 飞航导弹, 2008(6): 32-34. [61] MARSH J, MYRABO L, MESSITT D, et al. Experimental investigation of the hypersonic 'air spike' inlet at Mach 10[C]//34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996. [62] TORO P, MYRABO L, NAGAMATSU H. Pressure investigation of the hypersonic 'Directed-Energy Air Spike' inlet at Mach number 10 with arc power up to 70 kW[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. [63] BRACKEN R, MYRABO L, NAGAMATSU H, et al. Experimental investigation of an electric arc air-spike with and without blunt body in hypersonic flow[C]//39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. [64] BRACKEN R, MYRABO L, NAGAMATSU H, et al. Experimental investigation of an electric arc air-spike in Mach 10 flow with preliminary drag measurements[C]//32nd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2001. [65] ZHOU Y. Performance characteristics of sparkjet and its application on shock wave control[D]. Changsha: National University of Defense Technology, 2014: 2-7 (in Chinese). 周岩. 火花放电合成射流工作性能及其在激波控制中的应用研究[D]. 长沙: 国防科学技术大学, 2014: 2-7. [66] BAI X Y. Numerical and experimental investigations on energy and charges deposition in a needle-like electron-beam plasma[D]. Hefei: University of Science and Technology of China, 2017: 5-10 (in Chinese). 白小燕. 针状电子束等离子体能量与电荷沉积问题的模拟和实验研究[D]. 合肥: 中国科学技术大学, 2017: 5-10. [67] ZHU B L. The generation and modulation of plasmas by electron beam[D]. Hefei: University of Science and Technology of China, 2021: 7-12 (in Chinese). 朱波龙. 电子束产生和调控等离子体的实验研究[D]. 合肥: 中国科学技术大学, 2021: 7-12. [68] JIANG Z L. Progresses on experimental techniques of hypersonic and high-enthalpy wind tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3): 347-355 (in Chinese). 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3): 347-355. [69] WANG D K, WANG W D, QING Z X, et al. Study on mechanism of hypersonic wave drag reduction with pulsed laser energy[J]. Journal of Propulsion Technology, 2017, 38(7): 1675-1680 (in Chinese). 王殿恺, 王伟东, 卿泽旭, 等. 脉冲激光能量降低高超声速波阻机理研究[J]. 推进技术, 2017, 38(7): 1675-1680. [70] FUJIWARA T. Propagation mechanism of laser-supported detonation wave[C]//29th Aerospace Sciences Meeting. Reston: AIAA, 1991. [71] CANDLER G V, MACCORMACK R W. Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium[J]. Journal of Thermophysics and Heat Transfer, 1991, 5(3): 266-273. [72] MAO M L, DONG W Z, DENG X G, et al. Numerical simulating study of the interaction between a high powered laser and the hypersonic flowfield about a spherecone[J]. Acta Aerodynamica Sinica, 2001, 19(2): 172-176 (in Chinese). 毛枚良, 董维中, 邓小刚, 等. 强激光与高超声速球锥流场干扰数值模拟研究[J]. 空气动力学学报, 2001, 19(2): 172-176. [73] YANG P T, HONG Y J, HUANG H, et al. Numerical study on evolution of laser-induced shock wave[J]. High Power Laser and Particle Beams, 2010, 22(11): 2556-2560 (in Chinese). 杨鹏涛, 洪延姬, 黄辉, 等. 激光引致激波演化数值研究[J]. 强激光与粒子束, 2010, 22(11): 2556-2560. [74] NI X W, WANG W Z, LU J, et al. Numerical simulation of laser-induced-air plasma shock wave[J]. Acta Armamentarii, 1998, 19(2): 134-138 (in Chinese). 倪晓武, 王文中, 陆建, 等. 强激光致空气击穿过程的数值模拟[J]. 兵工学报, 1998, 19(2): 134-138. |