[1] LI R L, NIU Z Y, LIN R S. A novel method for the RCS reduction of conformal microstrip antenna[C]//Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference. Piscataway:IEEE Press, 2011:516-519. [2] 杨波, 赵培林, 蔡三军, 等. 新一代战斗机座舱盖关键技术与设计方案[J]. 航空学报, 2020, 41(6):523465. YANG B, ZHAO P L, CAI S J, et al. Key technologies and design of new generation fighter canopy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523465(in Chinese). [3] 叶杰, 刘志慧. 机载预警雷达共形阵应用技术分析[J]. 现代雷达, 2009, 31(7):8-11. YE J, LIU Z H. Analysis of application of AEW radar with conformal array[J]. Modern Radar, 2009, 31(7):8-11(in Chinese). [4] CHIREIX H. Antennes à rayonnement zénithal réduit[J]. L'Onde Electrique, 1936, 15:440-445. [5] GETHING P J D. High-frequency direction finding[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(1):49-61. [6] KNOTT P. Design of a triple patch antenna element for double curved conformal antenna arrays[C]//2006 First European Conference on Antennas and Propagation. Piscataway:IEEE Press, 2006:1-4. [7] KNOTT P. Antenna design and beamforming for a conformal antenna array demonstrator[C]//2006 IEEE Aerospace Conference. Piscataway:IEEE Press, 2006:7. [8] 邹火儿, 韩国栋. 机载低剖面卫通天线的发展与未来[J]. 现代雷达, 2014, 36(3):53-56, 61. ZOU H E, HAN G D. Development and future of low profiled airborne antenna for satellite communication[J]. Modern Radar, 2014, 36(3):53-56, 61(in Chinese). [9] 尹周平, 黄永安, 布宁斌, 等. 柔性电子喷印制造:材料、工艺和设备[J]. 科学通报, 2010, 55(25):2487-2509. YIN Z P, HUANG Y A, BU N B, et al. Inkjet printing for flexible electronics:Materials, processes and equipments[J].Chinese Science Bulletin, 2010, 55(25):2487-2509(in Chinese). [10] ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing:Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1):91-110. [11] GAO Y X, LIU R, WANG X P, et al. Flexible RFID tag inductor printed by liquid metal ink printer and its characterization[J]. Journal of Electronic Packaging, 2016, 138(3):031007. [12] PARK Y G, AN H S, KIM J Y, et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures[J]. Science Advances, 2019, 5(6):eaaw2844. [13] PARK Y G, MIN H, KIM H, et al. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement[J]. Nano Letters, 2019, 19(8):4866-4872. [14] ADAMS J J, DUOSS E B, MALKOWSKI T F, et al. Conformal printing of electrically small antennas on three-dimensional surfaces[J]. Advanced Materials, 2011, 23(11):1335-1340. [15] WANG C, LI P, REN Z M, et al. Effect and experiment of curvature radius of 3-D printed conformal load-bearing antenna array on EM performance[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(4):e22130. [16] SHIN D, CHOI S, KIM J, et al. Direct-printing of functional nanofibers on 3D surfaces using self-aligning nanojet in near-field electrospinning[J]. Advanced Materials Technologies, 2020, 5(6):2000232. [17] SUBBARAMAN H, PHAM D T, XU X C, et al. Inkjet-printed two-dimensional phased-array antenna on a flexible substrate[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12:170-173. [18] LI Z, HUANG J, YANG Y P, et al. Additive manufacturing of conformal microstrip antenna using piezoelectric nozzle array[J]. Applied Sciences, 2020, 10(9):3082. [19] 董必扬. 电流体动力喷印的图形解析与共形制造应用[D]. 武汉:华中科技大学, 2017:49-54. DONG B Y. Graphical analysis and conformal manufacturing application of electrohydrodynamic printing[D]. Wuhan:Huazhong University of Science and Technology, 2017:49-54(in Chinese). [20] BLUMENTHAL T, FRATELLO V, NINO G, et al. Conformal printing of sensors on 3D and flexible surfaces using aerosol jet deposition[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, 2013. [21] PAULSEN J A, RENN M, CHRISTENSON K, et al. Printing conformal electronics on 3D structures with Aerosol Jet technology[C]//2012 Future of Instrumentation International Workshop (FIIW) Proceedings. Piscataway:IEEE Press, 2012:1-4. [22] LANGFORD N, SHINA S. Using conformal printed electronics for 3D printed antenna systems building blocks[C]//2019 Pan Pacific Microelectronics Symposium (Pan Pacific). Piscataway:IEEE Press, 2019:1-16. [23] 黄银, 李海成, 陈颖, 等. 可延展柔性光子/电子集成器件及转印技术[J]. 中国科学:物理学力学天文学, 2016, 46(4):61-74. HUANG Y, LI H C, CHEN Y, et al. Stretchable and flexible photonics/electronics devices and transfer printing[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016, 46(4):61-74(in Chinese). [24] YOON J, LEE S M, KANG D, et al. Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing[J]. Advanced Optical Materials, 2015, 3(10):1313-1335. [25] AHN J H, KIM H S, LEE K J, et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials[J]. Science, 2006, 314(5806):1754-1757. [26] SAEIDPOURAZAR R, SANGID M D, ROGERS J A, et al. A prototype printer for laser driven micro-transfer printing[J]. Journal of Manufacturing Processes, 2012, 14(4):416-424. [27] 杨思慧. 柔性电子曲面共形变形机理与相似度判别准则[D]. 武汉:华中科技大学, 2018:1-23. YANG S H. Mechanism analysis of flexible electronics' curved conformal deformation process and similarity comparison criterion[D]. Wuhan:Huazhong University of Science and Technology, 2018:1-23(in Chinese). [28] SAADA G, LAYANI M, CHERNEVOUSKY A, et al. Hydroprinting conductive patterns onto 3D structures[J]. Advanced Materials Technologies, 2017, 2(5):1600289. [29] LE BORGNE B, DE SAGAZAN O, CRAND S, et al. Conformal electronics wrapped around daily life objects using an original method:Water transfer printing[J]. ACS Applied Materials & Interfaces, 2017, 9(35):29424-29429. [30] WU H Y, CHIANG S W, YANG C, et al. Conformal pad-printing electrically conductive composites onto thermoplastic hemispheres:Toward sustainable fabrication of 3-cents volumetric electrically small antennas[J]. PLoS One, 2015, 10(8):e0136939. [31] KIM B S, SHIN K Y, PYO J B, et al. Reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire networks[J]. ACS Applied Materials & Interfaces, 2016, 8(4):2582-2590. [32] KIM Y S, BASIR A, HERBERT R, et al. Soft materials, stretchable mechanics, and optimized designs for body-wearable compliant antennas[J]. ACS Applied Materials & Interfaces, 2020, 12(2):3059-3067. [33] PURVIS A, MCWILLIAM R, JOHNSON S, et al. Photolithographic patterning of bihelical tracks onto conical substrates[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2007, 6(4):043015. [34] JOBS M, HJORT K, RYDBERG A, et al. A tunable spherical cap microfluidic electrically small antenna[J]. Small, 2013, 9(19):3230-3234. [35] HUANG Y, WANG Y Z, XIAO L, et al. Microfluidic serpentine antennas with designed mechanical tunability[J]. Lab Chip, 2014, 14(21):4205-4212. [36] 胡建强, 李鹏, 戴福洪. 丝网印刷柔性薄膜天线力电性能表征[J]. 哈尔滨工业大学学报, 2018, 50(5):18-23. HU J Q, LI P, DAI F H. Mechanical and electric performance characterization of screen printed flexible membrane antennas[J]. Journal of Harbin Institute of Technology, 2018, 50(5):18-23(in Chinese). [37] HUANG Y, WU H, XIAO L, et al. Assembly and applications of 3D conformal electronics on curvilinear surfaces[J]. Materials Horizons, 2019, 6(4):642-683. [38] YANG J U, CHO J H, YOO M J. Selective metallization on copper aluminate composite via laser direct structuring technology[J]. Composites Part B:Engineering, 2017, 110:361-367. [39] HU C F, LI N J, CHEN W J, et al. High-precision RCS measurement of aircraft's weak scattering source[J]. Chinese Journal of Aeronautics, 2016, 29(3):772-778. [40] 王耀华. 关于机载预警侦察无人机共形天线的研究[J]. 数字通信世界, 2019(3):59. WANG Y H. Research on conformal antenna of airborne early warning reconnaissance UAV[J].Digital Communication World, 2019(3):59(in Chinese). [41] 沈威宇, 陈国虎, 张广求, 等. 一种应用于无人机的水平全向共形环天线设计[J]. 信息工程大学学报, 2018, 19(3):327-330. SHEN W Y, CHEN G H, ZHANG G Q, et al. Design of wideband conformal horizontal omnidirectional loop antenna for unmanned aerial vehicle[J]. Journal of Information Engineering University, 2018, 19(3):327-330(in Chinese). [42] 辛荣提, 沈亮, 冷智辉, 等. 结构一体化天线发展及其应用[C]//第五届中国无人机大会论文集. 北京:航空工业出版社, 2014:190-195. XIN R T, SHEN L, LENG Z H, et al. Development and application of structure integrated antenna[C]//Proceedings of the 5th China UAV Conference. Beijing:Aviation Industry Press, 2014:190-195(in Chinese). [43] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3):623418. MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623418(in Chinese). [44] 许鸣, 王开华, 王克选, 等. 一种新型宽波束低剖面无人机载共形天线[J]. 电讯技术, 2013, 53(4):488-492. XU M, WANG K H, WANG K X, et al. A novel wide beamwidth conformal antenna on unmanned aerial vehicle[J]. Telecommunication Engineering, 2013, 53(4):488-492(in Chinese). [45] PATROVSKY A, SEKORA R. Structural integration of a thin conformal annular slot antenna for UAV applications[C]//2010 Loughborough Antennas & Propagation Conference. Piscataway:IEEE Press, 2010:229-232. [46] JAECK V, BERNARD L, MAHDJOUBI K, et al. Design and manufacturing of conformal antenna array on a conical surface at 5.2 GHz[C]//201747th European Microwave Conference (EuMC). Piscataway:IEEE Press, 2017:1207-1210. [47] ZHOU J Z, LI H T, KANG L, et al. Design, fabrication, and testing of active skin antenna with 3D printing array framework[J]. International Journal of Antennas and Propagation, 2017, 2017:7516323. [48] ZHANG J J, WANG J H, CHEN M E, et al. RCS reduction of patch array antenna by electromagnetic band-gap structure[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11:1048-1051. [49] 贺友龙, 郝汀, 梁洪灿, 等. 超宽带弹载共形天线设计[J]. 舰船电子对抗, 2020, 43(3):89-92. HE Y L, HAO T, LIANG H C, et al. Design of UWB missile-borne conformal antenna[J]. Shipboard Electronic Countermeasure, 2020, 43(3):89-92(in Chinese). [50] 李得东. 若干小型化宽带共形天线设计[D]. 西安:西安电子科技大学, 2018:1-14. LI D D. Some miniaturized broadband conformal antennas design[D]. Xi'an:Xidian University, 2018:1-14(in Chinese). [51] MOHAMADZADE B, SIMORANGKIR R B V B, HASHMI R M, et al. A conformal ultrawideband antenna with monopole-like radiation patterns[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8):6383-6388. [52] 易克初, 李怡, 孙晨华, 等. 卫星通信的近期发展与前景展望[J]. 通信学报, 2015, 36(6):161-176. YI K C, LI Y, SUN C H, et al. Recent development and its prospect of satellite communications[J]. Journal on Communications, 2015, 36(6):161-176(in Chinese). [53] 王从思, 韩如冰, 王伟, 等. 星载可展开有源相控阵天线结构的研究进展[J]. 机械工程学报, 2016, 52(5):107-123. WANG C S, HAN R B, WANG W, et al. Development of spaceborne deployable active phased array antennas[J]. Journal of Mechanical Engineering, 2016, 52(5):107-123(in Chinese). [54] 陈传志, 董家宇, 陈金宝, 等. 空间大型星载抛物面天线研究进展[J]. 航空学报, 2021, 42(1):523833. CHEN C Z, DONG J Y, CHEN J B, et al. Large spaceborne parabolic antenna:Researchp progress[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):523833(in Chinese). [55] 陈国辉, 王波, 华岳, 等. 嫦娥四号中继星伞状可展开天线关键技术研究[J]. 中国科学:技术科学, 2019, 49(2):166-174. CHEN G H, WANG B, HUA Y, et al. The key technologies for radial rib deployable antenna of Chang'e-4 relay satellite[J]. Scientia Sinica (Technologica), 2019, 49(2):166-174(in Chinese). [56] LIU Z Q, QIU H, LI X, et al. Review of large spacecraft deployable membrane antenna structures[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6):1447-1459. [57] GASPAR J, MANN T, SREEKANTAMURTHY T, et al. Structural test and analysis of a hybrid inflatable antenna:AIAA-2007-1832[R]. Reston:AIAA, 2007. [58] BABUSCIA A, VAN DE LOO M, WEI Q J, et al. Inflatable antenna for cubesat:Fabrication, deployment and results of experimental tests[C]//2014 IEEE Aerospace Conference. Piscataway:IEEE Press, 2014:1-12. [59] 张幸运, 任武, 李伟明. 可重构天线的发展概述[C]//2015年全国微波毫米波会议论文集, 2015:1889-1892. ZHANG X Y, REN W, LI W M. The development of reconfigurable antenna[C]//Proceedings of 2015 National Conference on Microwave and Millimeter Waves, 2015:1889-1892(in Chinese). [60] NIROO-JAZI M, DENIDNI T A. Electronically sweeping-beam antenna using a new cylindrical frequency-selective surface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2):666-676. [61] SARASWAT K, HARISH A R. Flexible dual-band dual-polarised CPW-fed monopole antenna with discrete-frequency reconfigurability[J]. IET Microwaves, Antennas & Propagation, 2019, 13(12):2053-2060. [62] 林建成. 频率可重构天线的研制[D]. 成都:电子科技大学, 2015:1-10. LIN J C. Research on the frequency reconfigurable antenna[D]. Chengdu:University of Electronic Science and Technology of China, 2015:1-10(in Chinese). [63] AMRAM BENGIO E, SENIC D, TAYLOR L W, et al. Carbon nanotube thin film patch antennas for wireless communications[J]. Applied Physics Letters, 2019, 114(20):203102. [64] ILCEV S D. Global mobile satellite communications applications[M]. Berlin:Springer, 2018. [65] 刘玉敬. 基于超材料的阵列天线去耦合及有源超材料研究[D]. 哈尔滨:哈尔滨工程大学, 2016:1-7. LIU Y J. Research on metamaterial-based decoupling of antenna arrays and active metamaterials[D]. Harbin:Harbin Engineering University, 2016:1-7(in Chinese). [66] CHAUVET F, GUINVARC'H R, HÉIER M. Approximated method neglecting coupling for conformal antenna[J]. Applied Computational Electromagnetics Society Journal, 2007, 22(1):105-111. [67] CHANEY R L, HACKLER D R, WILSON D G, et al., Advanced conformal load-bearing antenna structures[C]//2013 Government Microcircuit Applications and Critical Technology Conference, 2013. [68] 杨鹏. 基于复杂载体的共形软件天线关键技术研究[D]. 成都:电子科技大学, 2012:10-21. YANG P. Study of key techniques of conformal software antenna based on complex platforms[D]. Chengdu:University of Electronic Science and Technology of China, 2012:10-21(in Chinese). [69] 何明. 自适应共形阵列天线的研究与分析[D]. 成都:电子科技大学, 2009:36-59. HE M. Research and analysis of adaptive conformal array antenna[D]. Chengdu:University of Electronic Science and Technology of China, 2009:36-59. [70] 刘元柱, 肖绍球, 唐明春, 等. 共形天线分析综合方法研究进展[J]. 航空兵器, 2011, 18(5):13-18. LIU Y Z, XIAO S Q, TANG M C, et al. Development of the method of analysis and synthesis for conformal antenna[J]. Aero Weaponry, 2011, 18(5):13-18(in Chinese). [71] LOU Z, JIN J M. Finite-element analysis of phased-array antennas[J]. Microwave and Optical Technology Letters, 2004, 40(6):490-496. [72] ZHAO W J, LI L W, LI E P, et al. Analysis of radiation characteristics of conformal microstrip arrays using adaptive integral method[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2):1176-1181. [73] OUYANG J, ZHANG J, ZHI ZHANG K, et al. Analysis and synthesis of conformal conical surface linear phased array with volume surface integral equation+AEP (Active Element Pattern) and INSGA-II[J]. IET Microwaves, Antennas & Propagation, 2012, 6(11):1277-1285. [74] 许群, 王云香, 刘少斌, 等. 飞行器共形天线技术综述[J]. 现代雷达, 2015, 37(9):50-54. XU Q, WANG Y X, LIU S B, et al. An overview on conformal antenna technology for aircraft[J]. Modern Radar, 2015, 37(9):50-54(in Chinese). [75] LIU J P, XIAO L, RAO Z F, et al. High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices[J]. Advanced Materials Technologies, 2018, 3(8):1800155. [76] PENG J, CHEN B L, WANG Z C, et al. Surface coordination layer passivates oxidation of copper[J]. Nature, 2020, 586(7829):390-394. [77] 庞博, 胡小光, 王泽龙, 等. 转印技术及其在柔性电子中的应用[J]. 机电工程技术, 2019, 48(10):145-149. PANG B, HU X G, WANG Z L, et al. Transfer printing and its applications in flexible electronics[J]. Mechanical & Electrical Engineering Technology, 2019, 48(10):145-149(in Chinese). [78] LEE D Y, HINES D R, STAFFORD C M, et al. Low-temperature plasma-assisted nanotransfer printing between thermoplastic polymers[J]. Advanced Materials, 2009, 21(24):2524-2529. [79] YIM K H, ZHENG Z J, LIANG Z Q, et al. Efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique[J]. Advanced Functional Materials, 2008, 18(7):1012-1019. [80] LEISTEN O, FIERET J, BOEHLEN I S, et al. Laser-assisted manufacture for performance-optimized dielectrically loaded GPS antennas for mobile telephones[J]. Proceedings of SPIE, 2002, 4637:397-403. [81] 江树镇, 郭钟宁, 郑文书, 等. 生物芯片微流道的微细加工工艺[J]. 电加工与模具, 2014(3):66-70. JIANG S Z, GUO Z N, ZHENG W S, et al. The micro machining processes of microchannels on biochips[J]. Electromachining & Mould, 2014(3):66-70(in Chinese). [82] 艾骏. 高效率曲面激光直写光刻关键技术研究[D]. 武汉:华中科技大学, 2018:2-10. AI J. Study on key technologies of high-efficiency laser direct writing lithography on curved surfaces[D]. Wuhan:Huazhong University of Science and Technology, 2018:2-10(in Chinese). [83] 徐晨, 郝金杰. 飞行器天线的发展与应用[J]. 电子世界, 2016(14):15. XU C, HAO J J. Development and application of aircraft antennas[J]. Electronics World, 2016(14):15(in Chinese). [84] 胡志慧, 姜永华, 凌祥, 等. 共形天线技术及其在导引头中的应用[J]. 飞航导弹, 2012(11):77-81. HU Z H, JIANG Y H, LING X, et al. Conformal antenna technology and its application in seeker[J]. Aerodynamic Missile Journal, 2012(11):77-81(in Chinese). [85] ENKRICH C, WEGENER M, LINDEN S, et al. Magnetic metamaterials at telecommunication and visible frequencies[J]. Physical Review Letters, 2005, 95(20):203901. [86] 杜文豪. 共形阵列天线形变的影响分析与补偿研究[D]. 西安:西安电子科技大学, 2017:1-5. DU W H. Study on the deformation analysis and compensation of conformal array antennas[D]. Xi'an:Xidian University, 2017:1-5(in Chinese). |