[1] WALLEY S M. Historical origins of indentation hardness testing[J]. Materials Science and Technology, 2012, 28(9-10):1028-1044. [2] MUKHOPADHYAY N K, PAUFLER P. Micro- and nanoindentation techniques for mechanical characterisation of materials[J]. International Materials Reviews, 2006, 51(4):209-245. [3] PATHAK S, KALIDINDI S R. Spherical nanoindentation stress-strain curves[J]. Materials Science and Engineering:R:Reports, 2015, 91:1-36. [4] RAMAMURTY U, JANG J I. Nanoindentation for probing the mechanical behavior of molecular crystals-A review of the technique and how to use it[J]. CrystEngComm, 2014, 16(1):12-23. [5] KHOSRAVANI A, CECEN A, KALIDINDI S R. Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals:Application to dual-phase steels[J]. Acta Materialia, 2017, 123:55-69. [6] WEAVER J S, PRIDDY M W, MCDOWELL D L, et al. On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction[J]. Acta Materialia, 2016, 117:23-34. [7] WANG Z X, WANG S B, ZHOU S L, et al. Micro- and macroscopic plastic flow responses in high Nb-containing TiAl alloy by nanoindentation[J]. Intermetallics, 2020, 127:106958. [8] RAHIMI R M, BAHR D F. Individual phase deformation and flow correlation to macroscopic constitutive properties of DP1180 steel[J]. Materials Science and Engineering:A, 2019, 756:328-335. [9] CHENG G, ZHANG F, RUIMI A, et al. Quantifying the effects of tempering on individual phase properties of DP980 steel with nanoindentation[J]. Materials Science and Engineering:A, 2016, 667:240-249. [10] COOK R F. Fracture sequences during elastic-plastic indentation of brittle materials[J]. Journal of Materials Research, 2019, 34(10):1633-1644. [11] AST J, GHIDELLI M, DURST K, et al. A review of experimental approaches to fracture toughness evaluation at the micro-scale[J]. Materials & Design, 2019, 173:107762. [12] PRACH O, MINNERT C, JOHANNS K E, et al. A new nanoindentation creep technique using constant contact pressure[J]. Journal of Materials Research, 2019, 34(14):2492-2500. [13] KIM J H, CHOI S, LEE J S, et al. An indentation method for evaluation of residual stress:ESTIMATION of stress-free indentation curve using stress-independent indentation parameters[J]. Journal of Materials Research, 2019, 34(7):1103-1111. [14] GHANBARI S, BAHR D F. An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials[J]. Journal of Materials Research, 2019, 34(7):1121-1129. [15] PENG G J, LU Z K, MA Y, et al. Spherical indentation method for estimating equibiaxial residual stress and elastic-plastic properties of metals simultaneously[J]. Journal of Materials Research, 2018, 33(8):884-897. [16] TIWARI A, NATARAJAN S. Applied nanoindentation in advanced materials[M]. Chichester:John Wiley & Sons, Ltd, 2017. [17] HINTSALA E D, HANGEN U, STAUFFER D D. High-throughput nanoindentation for statistical and spatial property determination[J]. The Journal of the Minerals, 2018, 70(4):494-503. [18] BARNOUSH A, HOSEMANN P, MOLINA-ALDAREGUIA J, et al. In situ small-scale mechanical testing under extreme environments[J]. MRS Bulletin, 2019, 44(6):471-477. [19] ISO 14577 Metallic materials-instrumented indentation test for hardness and materials parameters[S]. Geneva:ISO,2015. [20] FISCHER-CRIPPS A C. Nanoindentation instrumentation[M]//Nanoindentation. New York:Springer New York, 2011:199-211. [21] ZHANG Y F, OH Y, STAUFFER D, et al. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements[J]. Review of Scientific Instruments, 2018, 89(4):045109. [22] ZHANG Y H, LEBEDEV M, SMITH G, et al. Nano-mechanical properties and pore-scale characterization of different rank coals[J]. Natural Resources Research, 2020, 29(3):1787-1800. [23] GUILLONNEAU G, MIESZALA M, WEHRS J, et al. Nanomechanical testing at high strain rates:New instrumentation for nanoindentation and microcompression[J]. Materials & Design, 2018, 148:39-48. [24] HUANG H, ZHAO H W, SHI C L, et al. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope[J]. AIP Advances, 2012, 2(4):042193. [25] WANG S B, ZHAO H W. Low temperature nanoindentation:Development and applications[J]. Micromachines, 2020, 11(4):407. [26] DOERNER M F, NIX W D. A method for interpreting the data from depth-sensing indentation instruments[J]. Journal of Materials Research, 1986, 1(4):601-609. [27] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583. [28] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1):3-20. [29] CHENG Y T, CHENG C M. Relationships between hardness, elastic modulus, and the work of indentation[J]. Applied Physics Letters, 1998, 73(5):614-616. [30] CHENG Y T, CHENG C M. Scaling, dimensional analysis, and indentation measurements[J]. Materials Science and Engineering:R:Reports, 2004, 44(4-5):91-149. [31] HAY J, CRAWFORD B. Measuring substrate-independent modulus of thin films[J]. Journal of Materials Research, 2011, 26(6):727-738. [32] SAHA R, NIX W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation[J]. Acta Materialia, 2002, 50(1):23-38. [33] MENČÍK J, MUNZ D, QUANDT E, et al. Determination of elastic modulus of thin layers using nanoindentation[J]. Journal of Materials Research, 1997, 12(9):2475-2484. [34] YANG R, ZHANG T H, JIANG P, et al. Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation[J]. Applied Physics Letters, 2008, 92(23):231906. [35] YANG Y, LIAO N B, ZHANG M, et al. Evaluation of the elastic-plastic properties of SiCN coating system by finite element simulations[J]. Journal of the European Ceramic Society, 2017, 37(13):3891-3897. [36] GUPTA A K, PORWAL D, DEY A, et al. Evaluation of elasto-plastic properties of ITO film using combined nanoindentation and finite element approach[J]. Ceramics International, 2016, 42(1):1225-1233. [37] BROITMAN E. Indentation hardness measurements at macro-, micro-, and nanoscale:A critical overview[J]. Tribology Letters, 2016, 65(1):1-18. [38] GILL S P A, CAMPBELL C J. A model for the indentation size effect in polycrystalline alloys coupling intrinsic and extrinsic length scales[J]. Journal of Materials Research, 2019, 34(10):1645-1653. [39] WANG X X, ZHAN M, GAO P F, et al. Micromechanical behaviour of TA15 alloy cylindrical parts processed by multi-pass flow forming[J]. Materials Science and Engineering:A, 2018, 737:328-335. [40] VOYIADJIS G, YAGHOOBI M. Review of nanoindentation size effect:experiments and atomistic simulation[J]. Crystals, 2017, 7(10):321. [41] ZHANG C, VOYIADJIS G Z. Rate-dependent size effects and material length scales in nanoindentation near the grain boundary for a bicrystal FCC metal[J]. Materials Science and Engineering:A, 2016, 659:55-62. [42] NIX W D, GAO H J. Indentation size effects in crystalline materials:A law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3):411-425. [43] PHARR G M, HERBERT E G, GAO Y F. The indentation size effect:A critical examination of experimental observations and mechanistic interpretations[J]. Annual Review of Materials Research, 2010, 40(1):271-292. [44] LEE S W, MEZA L, GREER J R. Cryogenic nanoindentation size effect in [001] -oriented face-centered cubic and body-centered cubic single crystals[J]. Applied Physics Letters, 2013, 103(10):101906. [45] MA Z S, ZHOU Y C, LONG S G, et al. On the intrinsic hardness of a metallic film/substrate system:Indentation size and substrate effects[J]. International Journal of Plasticity, 2012, 34:1-11. [46] MA Z S, ZHOU Y C, LONG S G, et al. An inverse approach for extracting elastic-plastic properties of thin films from small scale sharp indentation[J]. Journal of Materials Science & Technology, 2012, 28(7):626-635. [47] VOYIADJIS G Z, FAGHIHI D, ZHANG C. Analytical and experimental determination of rate-and temperature-dependent length scales using nanoindentation experiments[J]. Journal of Nanomechanics and Micromechanics, 2011, 1(1):24-40. [48] VOYIADJIS G Z, SONG Y. Strain gradient continuum plasticity theories:Theoretical, numerical and experimental investigations[J]. International Journal of Plasticity, 2019, 121:21-75. [49] ARMSTRONG R W. Size effects on material yield strength/deformation/fracturing properties[J]. Journal of Materials Research, 2019, 34(13):2161-2176. [50] LI Y, FANG X F, LU S Y, et al. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation[J]. Materials Science and Engineering:A, 2016, 678:65-71. [51] WANG S B, XU H L, WANG Y Y, et al. Design and testing of a cryogenic indentation apparatus[J]. Review of Scientific Instruments, 2019, 90(1):015117. [52] LI P D, LIU Y J, ZHANG H, et al. Indentation on a half-infinite one-dimensional hexagonal quasi-crystal space by a rigid flat-ended cylindrical indenter with uniform heat flux or temperature[J]. Mechanics of Materials, 2019, 131:33-46. [53] ZHANG X, WANG Z J, SHEN H M, et al. Frictional contact involving a multiferroic thin film subjected to surface magnetoelectroelastic effects[J]. International Journal of Mechanical Sciences, 2017, 131-132:633-648. [54] HU R Z, PRAKASH C, TOMAR V, et al. Experimentally-validated mesoscale modeling of the coupled mechanical-thermal response of AP-HTPB energetic material under dynamic loading[J]. International Journal of Fracture, 2017, 203(1-2):277-298. [55] ELLOUMI R, EL-BORGI S, GULER M A, et al. The contact problem of a rigid stamp with friction on a functionally graded magneto-electro-elastic half-plane[J]. Acta Mechanica, 2016, 227(4):1123-1156. [56] ASHIDA F, TAUCHERT T R, NODA N. A general solution technique for piezothermoelasticity of hexagonal solids of class 6 mm in Cartesian coordinates[J]. ZAMM -Journal of Applied Mathematics and Mechanics, 1994, 74(2):87-95. [57] YANG J, JIN X Y. Indentation of a flat circular punch with uniform heat flux at its base into transversely isotropic magneto-electro-thermo-elastic half space[J]. Journal of Applied Physics, 2014, 115(8):083516. [58] CHEN W Q, LEE K Y, DING H J. General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method[J]. International Journal of Engineering Science, 2004, 42(13-14):1361-1379. [59] ZHU R K, MING W J, LIU Y Y, et al. The intrinsic piezoresponse in piezoelectric medium under contact-mode piezoresponse force microscopy[J]. International Journal of Mechanical Sciences, 2018, 145:400-409. [60] HAO F, FANG D N. Modeling of magnetoelectric effects in flexural nanobilayers:The effects of surface stress[J]. Journal of Applied Physics, 2013, 113(10):104103. [61] ELLOUMI R, EL-BORGI S, GULER M A, et al. The contact problem of a rigid stamp with friction on a functionally graded magneto-electro-elastic half-plane[J]. Acta Mechanica, 2016, 227(4):1123-1156. [62] LEE D C, KIM C W. Two-way nonlinear mechanical-electrochemical-thermal coupled analysis method to predict thermal runaway of lithium-ion battery cells caused by quasi-static indentation[J]. Journal of Power Sources, 2020, 475:228678. [63] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3):77-94. LIU S F, SONG X, XUE T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3):77-94(in Chinese). [64] BEWLAY B P, NAG S, SUZUKI A, et al. TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 2016, 33(4-5):549-559. [65] MAYER S, ERDELY P, FISCHER F D, et al. Intermetallic β-solidifying γ-TiAl based alloys-from fundamental research to application[J]. Advanced Engineering Materials, 2017, 19(4):1600735. [66] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390. CHEN Y F, HONG C Q, HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38(5):311-390(in Chinese). [67] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732. GUO H B, GONG S K, XU H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2722-2732(in Chinese). [68] 张辰威, 张博明. 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报, 2014, 35(10):2747-2755. ZHANG C W, ZHANG B M. Application and key technology of composites tank in space cryogenic propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2747-2755(in Chinese). [69] 白新德. 材料腐蚀与控制[M]. 北京:清华大学出版社, 2005. BAI X D. Corrosion and control of materials[M]. Beijing:Tsinghua University Press, 2005(in Chinese). [70] WHEELER J M, ARMSTRONG D E J, HEINZ W, et al. High temperature nanoindentation:The state of the art and future challenges[J]. Current Opinion in Solid State and Materials Science, 2015, 19(6):354-366. [71] MINNERT C, OLIVER W C, DURST K. New ultra-high temperature nanoindentation system for operating at up to 1100℃[J]. Materials & Design, 2020, 192:108727. [72] CONTE M, MOHANTY G, SCHWIEDRZIK J J, et al. Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800℃[J]. The Review of Scientific Instruments, 2019, 90(4):045105. [73] QU Z L, YU M, LIU Y C, et al. An elevated-temperature depth-sensing instrumented indentation apparatus for investigating thermo-mechanical behaviour of thermal barrier coatings[J]. The Review of Scientific Instruments, 2017, 88(4):045102. [74] KANG W, MERRILL M, WHEELER J M. In situ thermomechanical testing methods for micro/nano-scale materials[J]. Nanoscale, 2017, 9(8):2666-2688. [75] WHEELER J M, MICHLER J. Elevated temperature, nano-mechanical testingin situin the scanning electron microscope[J]. Review of Scientific Instruments, 2013, 84(4):045103. [76] CHAVOSHI S Z, XU S Z. Temperature-dependent nanoindentation response of materials[J]. MRS Communications, 2018, 8(1):15-28. [77] WANG H, DHIMAN A, OSTERGAARD H E, et al. Nanoindentation based properties of Inconel 718 at elevated temperatures:A comparison of conventional versus additively manufactured samples[J]. International Journal of Plasticity, 2019, 120:380-394. [78] KOLB M, WHEELER J M, MATHUR H N, et al. Local mechanical properties of the (β0+ω0) composite in multiphase titanium aluminides studied with nanoindentation at room and high temperatures[J]. Materials Science and Engineering:A, 2016, 665:135-140. [79] SALARI S, RAHMAN M S, POLYCARPOU A A, et al. Elevated temperature mechanical properties of Inconel 617 surface oxide using nanoindentation[J]. Materials Science and Engineering:A, 2020, 788:139539. [80] SINGH P S, LIANG Z Y, PHARR G M, et al. Creep of a thermally stable nanocrystalline nickel tungsten alloy as measured by high temperature nanoindentation[J]. Materials Science and Engineering:A, 2020, 784:139309. [81] FANG X F, LI Y, YUE M K, et al. Chemo-mechanical coupling effect on high temperature oxidation:A review[J]. Science China Technological Sciences, 2019, 62(8):1297-1321. [82] LI Y, FANG X F, ZHANG S Y, et al. Microstructure evolution of FeNiCr alloy induced by stress-oxidation coupling using high temperature nanoindentation[J]. Corrosion Science, 2018, 135:192-196. [83] FENG G, NGAN A H W. Effects of creep and thermal drift on modulus measurement using depth-sensing indentation[J]. Journal of Materials Research, 2002, 17(3):660-668. [84] LEE H, CHEN Y, CLAISSE A, et al. Finite element simulation of hot nanoindentation in vacuum[J]. Experimental Mechanics, 2013, 53(7):1201-1211. [85] HOU X D, ALVAREZ C L M, JENNETT N M. Establishing isothermal contact at a known temperature under thermal equilibrium in elevated temperature instrumented indentation testing[J]. Measurement Science and Technology, 2017, 28(2):025016. [86] BRONS J G, PADILLA H A II, THOMPSON G B II, et al. Cryogenic indentation-induced grain growth in nanotwinned copper[J]. Scripta Materialia, 2013, 68(10):781-784. [87] HUSTON L Q, KIRAN M S R N, SMILLIE L A, et al. Cold nanoindentation of germanium[J]. Applied Physics Letters, 2017, 111(2):021901. [88] WANG S B, LIU H, XU L X, et al. Investigations of phase transformation in monocrystalline silicon at low temperatures via nanoindentation[J]. Scientific Reports, 2017, 7:8682. [89] 谢迪, 韦红余, 何敏, 等. 用于吸波材料的铁磁性/碳材料复合物[J]. 材料导报, 2017, 31(增刊2):125-128, 149. XIE D, WEI H Y, HE M, et al. Ferromagnetic carbon-based composites for wave absorbing materials[J]. Materials Review, 2017, 31(Sup 2):125-128, 149(in Chinese). [90] LIU C Y, ZHAO H W, MA Z C, et al. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions[J]. The Review of Scientific Instruments, 2018, 89(2):025112. [91] NILI H, KALANTAR-ZADEH K, BHASKARAN M, et al. In situ nanoindentation:Probing nanoscale multifunctionality[J]. Progress in Materials Science, 2013, 58(1):1-29. [92] FANG L, MUHLSTEIN C L, COLLINS J G, et al. Continuous electrical in situ contact area measurement during instrumented indentation[J]. Journal of Materials Research, 2008, 23(9):2480-2485. [93] COMBY-DASSONNEVILLE S, VOLPI F, PARRY G, et al. Resistive-nanoindentation:Contact area monitoring by real-time electrical contact resistance measurement[J]. MRS Communications, 2019, 9(3):1008-1014. [94] PHARR G M, OLIVER W C, COOK R F, et al. Electrical resistance of metallic contacts on silicon and germanium during indentation[J]. Journal of Materials Research, 1992, 7(4):961-972. [95] NOWAK R, CHROBAK D, NAGAO S, et al. An electric current spike linked to nanoscale plasticity[J]. Nature Nanotechnology, 2009, 4(5):287-291. [96] NGUYEN H H, WEI P J, LIN J F. Electric contact resistance for monitoring nanoindentation-induced delamination[J]. Advances in Natural Sciences:Nanoscience and Nanotechnology, 2011, 2(1):015007(4pp). [97] ZHOU H, PEI Y M, LI F X, et al. Electric-field-tunable mechanical properties of relaxor ferroelectric single crystal measured by nanoindentation[J]. Applied Physics Letters, 2014, 104(6):061904. [98] 裴永茂, 徐浩, 于泽军, 等. 磁电复合材料的力学实验与理论研究进展[J]. 固体力学学报, 2016, 37(3):193-207. PEI Y M, XU H, YU Z J, et al. Research progress in mechanical experiments and theory of magnetoelectric composite materials[J]. Chinese Journal of Solid Mechanics, 2016, 37(3):193-207(in Chinese). [99] FANG D N, ZHANG H L, XU H, et al. Deformation and fracture of electromagnetic thin films and laminates under multi-field loading[J]. Procedia IUTAM, 2017, 20:2-9. [100] ZHOU H, PEI Y M, FANG D N. Magnetic field tunable small-scale mechanical properties of nickel single crystals measured by nanoindentation technique[J]. Scientific Reports, 2014, 4:4583. [101] ZHOU H, PEI Y M, HUANG H, et al. Multi-field nanoindentation apparatus for measuring local mechanical properties of materials in external magnetic and electric fields[J]. The Review of Scientific Instruments, 2013, 84(6):063906. [102] ZHOU H, ZHANG H L, PEI Y M, et al. Scaling relationship among indentation properties of electromagnetic materials at micro- and nanoscale[J]. Applied Physics Letters, 2015, 106(8):081904. [103] ZIMMERMAN G O. Experimental techniques for low-temperature measurements:cryostat design, material properties, and superconductor critical-current testing[J]. Physics Today, 2007, 60(5):67. [104] HUANG H, ZHAO H W. In Situ nanoindentation and scratch testing inside scanning electron microscopes:opportunities and challenges[J]. Science of Advanced Materials, 2014, 6(5):875-889. [105] TRENKLE J C, PACKARD C E, SCHUH C A. Hot nanoindentation in inert environments[J]. The Review of Scientific Instruments, 2010, 81(7):073901. [106] HSUEH C H, SCHMAUDER S, CHEN C S, et al. Handbook of mechanics of materials[M]. Berlin:Springer, 2019. [107] KORTE S, STEARN R J, WHEELER J M, et al. High temperature microcompression and nanoindentation in vacuum[J]. Journal of Materials Research, 2012, 27(1):167-176. [108] WHEELER J M, MICHLER J. Indenter materials for high temperature nanoindentation[J]. Review of Scientific Instruments, 2013, 84(10):101301. [109] QU Z L, PEI Y M, HE R J, et al. Investigation of pile-up behavior for thermal barrier coatings under elevated-temperature indentation[J]. Journal of Applied Mechanics, 2016, 83(4):041009. |