收稿日期:2023-12-13
修回日期:2023-12-25
接受日期:2024-01-16
出版日期:2024-03-15
发布日期:2024-01-17
通讯作者:
王海峰
E-mail:wanghf611@163.com
基金资助:Received:2023-12-13
Revised:2023-12-25
Accepted:2024-01-16
Online:2024-03-15
Published:2024-01-17
Contact:
Haifeng WANG
E-mail:wanghf611@163.com
摘要:
未来作战环境对战斗机提出了更高、更全面的性能需求,促使战斗机与发动机之间更深层次的耦合,在研制过程中开展更加紧密的协同设计。回顾多年来战斗机设计中飞/发双方为实现综合最优而共同努力的理论研究和实践历程,辨析提出飞/发协同设计理念。通过分析穿透性制空等作战需求,提出高性能战斗机的主要能力特征,探究面向未来的飞/发协同设计需求。从飞行性能、隐身特性、飞行控制、全机能量4个设计视角提出相应的关键技术,并给出可能的实现途径和设计研究建议。
中图分类号:
王海峰. 高性能战斗机与发动机协同设计关键技术[J]. 航空学报, 2024, 45(5): 529978.
Haifeng WANG. Key technologies in collaborative airframe⁃engine design for high performance fighters[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529978.
| 1 | SUTLIFF D. V/STOL airframe/propulsion integration problem areas[C]∥ ASME 1973 International Gas Turbine Conference and Products Show. New York: American Society of Mechanical Engineers. 1973. |
| 2 | MACE J, DOANE P. Integrated air vehicle/propulsion technology for a multirole fighter—A MCAIR perspective[C]∥ Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
| 3 | SANGHI V, KUMAR S K, SUNDARARAJAN V, et al. Engine-airframe integration during conceptual design for military application[J]. Journal of Aircraft, 1998, 35(3): 380-386. |
| 4 | O’ROURKE R. Renewed great power competition: Implications for defense—Issues for congress: R43838[R]. Washington, D.C.: Congressional Research Service, 2021. |
| 5 | DUNCAN J S. Pilot’s handbook of aeronautical knowledge: FAA-H-8083-25B[R]. Oklahoma: Airman Testing Standards Branch, Federal Aviation Administration, United States Department of Transportation, 2016. |
| 6 | PIERSON R K. The use of the wind channel for performance prediction[J]. The Journal of the Royal Aeronautical Society, 1928, 32(206): 96-126. |
| 7 | A.A.F. Erection and maintenance instructions for army models P-51D-5,-10,-15,-20,-25,P-51K-1,-5,-10,-15 British model Mustang IV airplanes: AN 01-60JE-2[R]. Washington, D.C.: A.A.F, 1944. |
| 8 | NICHOLSON L F. Engine-airframe integration[J]. The Journal of the Royal Aeronautical Society, 1957, 61(563): 711-726. |
| 9 | BUCKNELL R. STOVL engine/airframe integration[C]∥ Proceedings of the 23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
| 10 | FOZARD J. The jet V/STOL Harrier—An evolutionary revolution in tactical air power[M]. Surrey: British Aerospace Aircraft Group Kingston-Brough Division, 1978: 1-8. |
| 11 | HIRSCHBERG M J. Soviet V/STOL aircraft: The struggle for a shipborne combat capability[M]. Reston: AIAA, 1997. |
| 12 | ROSS J. An integrated approach to V/STOL propulsion system development and testing[C]∥ Proceedings of the 2nd Aerodynamic Testing Conference. Reston: AIAA, 1966. |
| 13 | AGNEW J W. Correlation of F-15 flight and wind tunnel test control effectiveness[C]∥ North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development. Agard Conference Proceedings of Aerodynamic Characteristics of Controls. Pozzuoli: Italian Air Force Academy,1979. |
| 14 | 高为民. 飞发一体化设计的关键技术[J]. 航空动力, 2018(2): 58-62. |
| GAO W M. Key technology for aircraft/engine integration design[J]. Aerospace Power, 2018(2): 58-62 (in Chinese). | |
| 15 | RICHEY G K, SURBER L E, BERRIER B L. Airframe-propulsion integration for fighter aircraft[C]∥ Proceedings of the 21st Aerospace Sciences Meeting. Reston: AIAA, 1983. |
| 16 | ARONSTEIN D C, HIRSCHBERG M J, PICCIRILLO A C. Advanced tactical fighter to F-22 raptor: Origins of the 21st century air dominance fighter[M]. Reston: American Institute of Aeronautics and AIAA, 1998 |
| 17 | HERRICK P. Fighter aircraft/propulsion integration[C]∥ Proceedings of the Aircraft Systems, Design and Technology Meeting. Reston: AIAA, 1986. |
| 18 | KITOWSKI J. Fighter airframe/propulsion integration—A General Dynamics perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
| 19 | MACE J, NYBERG G. Fighter airframe/propulsion integration—A McDonnell Aircraft perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
| 20 | POWERS S, ROBINSON M. Fighter airframe/propulsion integration—A rockwell perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
| 21 | LISTON G, SMALL L. Fighter airframe/propulsion integration—A Wright Laboratory perspective[C]∥ AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
| 22 | 罗志会, 王小平, 黄纯洲. 新一代飞机自适应动力与热管理系统研究[J]. 航空科学技术, 2012, 23(5): 38-41. |
| LUO Z H, WANG X P, HUANG C Z. Adaptive power and thermal management system for new generation aircraft[J]. Aeronautical Science & Technology, 2012, 23(5): 38-41 (in Chinese). | |
| 23 | GRYNKEWICH A. An operational imperative: The future of air superiority[C]∥ Mitchell Institute Policy Papers. 2017. |
| 24 | MITCHELL W. Winged defense: The development and possibilities of modern air power-economic and military[M]. Tuscaloosa: University of Alabama Press, 2009. |
| 25 | TIRPAK J A. Piecing together the NGAD puzzle[J]. Air & Space Forces Magazine, 2022, 4: 1-8. |
| 26 | SELIGMAN L. Meet Boeing’s latest next-gen fighter concept[EB/OL].[2024-01-11]. . |
| 27 | Grumman Northrop. Just wait[EB/OL]. (2016-02-08)[2024-01-11]. . |
| 28 | Norris Guy. Skunk works unveils updated next-gen fighter concept[EB/OL]. (2017-06-06)[2024-01-11]. . |
| 29 | RAYMER D. Aircraft design: a conceptual approach, sixth edition[M]. Washington, D.C.: AIAA, Inc., 2018. |
| 30 | 日本経済新聞社. 次期戦闘機のF22改良版、日本が過半生産[EB/OL]. (2018-8-23)[2024-01-11]. . |
| 31 | Sugiyama Kentaro. MDAO for conceptual aircraft design at northrop grumman[EB/OL]. (2019-02-21)[2024-01-11]. . |
| 32 | ORME J S, CONNERS T R. Supersonic flight test results of a performance seeking control algorithm on a NASA F-15 aircraft[C]∥ 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 1994. |
| 33 | 晏武英, 谭米. 美国自适应发动机技术转化应用前瞻[J]. 航空动力, 2021(6): 18-22. |
| YAN W Y, TAN M. Foresight of U.S. Adaptive engine technology transformation[J]. Aerospace Power, 2021(6): 18-22 (in Chinese). | |
| 34 | 亚历山大·尼古拉耶维奇·达维坚科, 米哈伊尔·尤里耶维奇·斯特雷勒茨, 弗拉迪米尔·亚历山德罗维奇·鲁尼舍夫, 等. 可调整的超音速进气道: CN103748337B[P]. 2016-08-17. |
| NIKOLAEVICH A, YURIEVICH S M, ALEKSANDR- OVICH R V, et al. Adjustable supersonic air inlet: CN103748337B[P]. 2016-08-17 (in Chinese). | |
| 35 | 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997. |
| FANG B R. Aerodynamic layout design of aircraft[M]. Beijing: Aviation Industry Press, 1997 (in Chinese). | |
| 36 | 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安: 西北工业大学, 2017. |
| JIA L Y. Research on variable cycle engine control schedule design[D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
| 37 | 孙鹏,周莉,王占学,等 . 双涵道S 弯喷管内/ 外流场的温度分布研究[J]. 西北工业大学学报, 2021, 39 (6):1331-1339 |
| SUN, ZHOU L, WANG Z X,et al . Temperature distributions of internal flow and external jet fields of double serpentine convergent nozzle for turbofan[J]. Journal of Northwestern Polytechnical University, 2021, 39 (6): 1331-1339 (in Chinese). | |
| 38 | 孙鹏, 周莉, 王占学, 等. 双S弯喷管的流固耦合特性研究[J]. 推进技术, 2022, 43(10): 158-167. |
| SUN P, ZHOU L, WANG Z X, et al. Fluid-structure interaction characteristic of double serpentine nozzle[J]. Journal of Propulsion Technology, 2022, 43(10): 158-167 (in Chinese). | |
| 39 | Марчуков Евгений Ювенальевич,Привалов Виталий Николаевич,Чепкин Виктор Михайлович. ПЛОСКОЕ СОПЛО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ: RU 238376 C1[P] (in Russian). |
| 40 | MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design [M]. 2nd ed.Reston: AIAA, 2002. |
| 41 | 王浩. 低红外特征涡扇发动机总体设计若干问题研究[D]. 南京: 南京航空航天大学,2020. |
| WANG H. Research on some problems of overall design of low infrared characteristic turbofan engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
| 42 | FlightGlobal. F-22 Raptor in action at Farnborough Air Show[EB/OL]. (2010-7-20)[2024-01-11]. . |
| 43 | 斯仁. 飞行器红外隐身设计评估软件及二元喷管隐身技术研究[D]. 南京: 南京航空航天大学,2015. |
| SI R. Research on infrared stealth design evaluation software for aircraft and dual nozzle stealth technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
| 44 | MAIER M S, GAMBLE E J, WILSON J W, et al. Nacelle air pump for vector nozzles for aircraft: US5593112[P]. 1997-01-14. |
| 45 | 有人驾驶飞机(固定翼)飞行品质: [S].2004. |
| Piloted aircraft (fixed wing) flight quality: [S]. 2004. | |
| 46 | NGUYEN L T, OGBURN MARILYN E, GILBERT WILLIAM P, et al. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability: NASA-79-TP-1538[R]. Hampton: National Aeronautics and Space Administration Scientific and Technical Information Branch, 1979. |
| 47 | 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 239. |
| HAN J Q. Active disturbance rejection control technique[M]. Beijing: National Defense Industry Press, 2008: 239 (in Chinese). | |
| 48 | MASHINA B. Thrust vectoring nozzles of lockheed martin F-22 raptor[EB/OL]. (2022-8-27)[2024-01-11]. . |
| 49 | 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. |
| XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15 (in Chinese). | |
| 50 | 顾瑞. 新型双喉道气动矢量喷管机理与关键技术研究[D]. 南京: 南京航空航天大学, 2013. |
| GU R. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). | |
| 51 | 徐惊雷, 黄帅, 潘睿丰. 双喉道气动推力矢量喷管的现状及将来[J]. 航空动力, 2023(2): 67-70. |
| XU J L, HUANG S, PAN R F. Research status and development trend of dual throat fluidic thrust vectoring nozzle[J]. Aerospace Power, 2023(2): 67-70 (in Chinese). | |
| 52 | STEVEN M. Integrated Vehicle Energy Technology (INVENT) overview[C]∥ IEEE 2012 Annual Meeting. Cincinnati: Air Force Research Laboratory, 2012. |
| 53 | 付盛杰. F-22“猛禽” 典型第四代战斗机[M]. 北京: 蓝天出版社, 1999. |
| FU S J. F-22 Raptor is a typical fourth-generation fighter[M]. Beijing: Blue Sky Press, 1999 (in Chinese). | |
| 54 | 罗志会, 李胜全, 黄纯洲. 下一代飞机热管理技术的研究热点[J]. 航空科学技术, 2015, 26(8): 6-12. |
| LUO Z H, LI S Q, HUANG C Z. Highlights of next generation aircraft thermal management technology[J]. Aeronautical Science & Technology, 2015, 26(8): 6-12 (in Chinese). |
| [1] | 刘秀芳, 陈佳军, 郑勉, 钟富豪, 李亚楠, 侯予. 新型高效机载电子器件冷却系统设计及实验[J]. 航空学报, 2025, 46(9): 131078-131078. |
| [2] | 赵海宇, 周莉, 邓文剑, 王占学. 桨扇发动机进气道/对转桨扇气动干扰影响[J]. 航空学报, 2025, 46(8): 631042-631042. |
| [3] | 于宝石, 雷勇军, 申志彬, 张大鹏. 固体发动机药柱结构固化残余应力分析与控制技术[J]. 航空学报, 2025, 46(8): 31083-031083. |
| [4] | 罗飞腾, 渠镇铭, 李海涛, 李新珂, 姚达豪, 陈文娟, 龙垚松, 韦宝禧, 满延进, 杨甫江, 程强, 孔武斌. 高超声速进气道预喷注技术研究进展与关键问题[J]. 航空学报, 2025, 46(8): 631189-631189. |
| [5] | 姚斡维, 刘高文, 陈燕, 孔晓治, 林阿强. 高性能涡轮低位预旋供气系统正向设计[J]. 航空学报, 2025, 46(7): 130832-130832. |
| [6] | 张博一, 郭宏, 徐金全, 薛龙献, 马中兵, 陈俊祥. 航空高压直流供电系统双向瞬态干扰抑制方法[J]. 航空学报, 2025, 46(7): 330930-330930. |
| [7] | 徐义皓, 董芃呈, 郑俊超, 谭春青, 唐海龙. 自适应循环推进系统总体性能优化方法[J]. 航空学报, 2025, 46(7): 130987-130987. |
| [8] | 朱家健, 罗天罡, 田轶夫, 万明罡, 孙明波. 多通道滑动弧等离子体与燃料喷注协同强化超燃冲压发动机点火方法[J]. 航空学报, 2025, 46(7): 131037-131037. |
| [9] | 李恒晖, 林前辉, 韩涛锋, 何阳. 基于能量机动的近距空战模型及应用[J]. 航空学报, 2025, 46(7): 330863-330863. |
| [10] | 张卓然, 张健, 胡光源, 薛涵, 李涵琪, 于立. 多电飞机高功率密度高效电机系统热管理技术[J]. 航空学报, 2025, 46(6): 531380-531380. |
| [11] | 史忠科. 工程系统定性理论及其在飞行控制中的应用[J]. 航空学报, 2025, 46(6): 531463-531463. |
| [12] | 岳晓奎, 朱明珠, 耿浩华, 龚莉菁, 王勇越. 折纸超材料及其在航空航天领域的应用与展望[J]. 航空学报, 2025, 46(6): 531382-531382. |
| [13] | 崔乃刚, 屈国欣, 马鑫海, 徐世昊, 韦常柱. 面对称飞行器助推段自适应预设时间/性能控制[J]. 航空学报, 2025, 46(6): 531470-531470. |
| [14] | 曾耀莹, 王润宁, 侯佳琪, 张雨雷, 张佳平, 李贺军. 耐极端烧蚀环境C/C复合材料研究进展[J]. 航空学报, 2025, 46(6): 531927-531927. |
| [15] | 朱继宏, 张亦飞, 张亚辉, 侯杰, 张卫红. 空天结构保形设计: 从几何特征到能量疏导[J]. 航空学报, 2025, 46(6): 531833-531833. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学


