[1] 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8):022792. XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):022792(in Chinese). [2] 陈自发, 张晓晨, 王振峰, 等. 高超声速飞行器碳基头锥烧蚀外形计算[J]. 航空学报, 2016, 37(S1):38-45. CHEN Z F, ZHANG X C, WANG Z F, et al. Hypersonic aircraft's carbon-based nose ablation shape calculation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):38-45(in Chinese). [3] CONTI R, MACCORMACK R, GROENER L, et al. Practical Navier-Stokes computation of axisymmetric reentry flowfields with coupled ablation and shape change:AIAA-1992-0752[R]. Reston:AIAA, 1992. [4] CHEN Y K, HENLINE W D. Hypersonic nonequilibrium Navier-Stokes solutions over an ablating graphite nosetip[J]. Journal of Spacecraft and Rockets, 1994, 31(5):728-734. [5] CHEN Y K, HENLINE W D, TAUBER M E. Mars Pathfinder trajectory based heating and ablation calculations[J]. Journal of Spacecraft and Rockets, 1995, 32(2):225-230. [6] BHUTTA B, DAYWITT J, RAHAIM J, et al. New technique for the computation of severe reentry environments:AIAA-1996-1861[R]. Reston:AIAA, 1996. [7] KEENAN J A, CANDLER G V. Simulation of ablation in earth atmospheric entry:AIAA-1993-2789[R]. Reston:AIAA, 1993. [8] KEENAN J A, CANFLER G V. Simulation of graphite sublimation and oxidation under reentry conditions:AIAA-1994-2083[R]. Reston:AIAA, 1994. [9] HASSAN B, KUNTZ D W, POTTER D L. Coupled fluid/thermal prediction of ablating hypersonic vehicles:AIAA-1998-0168[R]. Reston:AIAA, 1998. [10] KUNTZ D W, HASSAN B, POTTER D L. An iterative approach for coupling fluid/thermal predictions of ablating hypersonic vehicles:AIAA-1999-3460[R]. Reston:AIAA, 1999. [11] OLYNICK D, CHEN Y K. Forebody TPS sizing with radiation and ablation for the stardust sample return capsule:AIAA-1997-2474[R]. Reston:AIAA, 1997. [12] TABIEI A, SOCKALINGAM S. Multiphysics coupled fluid/thermal/structural simulation for hypersonic reentry vehicles[J]. Journal of Aerospace Engineering, 2012, 25(2):273-281. [13] SUTTON K, GRAVES R A. A general stagnation-point convective-heating equation for arbitrary gas mixtures:NASA TR R-376[R]. Washington, D.C.:NASA, 1971. [14] PAPADOPOULOS P, SUBRAHMANYAM P. Trajectory coupled aerothermodynamics modeling for atmospheric entry probes at hypersonic velocities:AIAA-2006-1034[R]. Reston:AIAA, 2006. [15] TAUBER M E, SUTTON K. Stagnation-point radiative heating relations for earth and Mars entries[J]. Journal of Spacecraft and Rockets, 1991, 28(1):40-42. [16] MILLS A F. Convective heat and mass transfer to re-entry vehicles[D]. Los Angeles:California University, 1978:65. [17] HOVE D T, SHIH W C L. Re-entry vehicle stagnation region heat-transfer in particle environments[J]. AIAA Journal, 1977, 15(7):1002-1005. [18] POTTS R L. Application of integral methods to ablation charring erosion-A review[J]. Journal of Spacecraft and Rockets, 1995, 32(2):200-209. [19] SPALDING D B. Convective mass transfer[M]. New York:McGraw-Hill, 1963:156-168. [20] POTTS R L. Application of integral methods to ablation charring erosion[J] Journal of Spacecraft and Rockets, 1995, 32(2):200-209. [21] MILOS F S, RASSKY D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):24-34. [22] POTTS R. On heat balance integral solutions of carbonaceous ablator response during reentry:AIAA-1984-1677[R]. Reston:AIAA, 1984. [23] POTTS R. Hybrid integral/quasi-steady solution of charring ablation[C]//5th Joint Thermophysics and Heat Transfer Conference. Reston:AIAA, 1990. [24] BLACKWELL B F, HOGAN R E. One-dimensional ablation using Landau transformation and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(2):282-287. [25] ONAY O K, EYI S N. Implicit solution of one-dimensional transient ablation[C]//13th International Energy Conversion Engineering Conference. Reston:AIAA, 2015. [26] AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation using a full Newton's method and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1):71-82. [27] 肖筱南. 现代数值计算方法[M]. 北京:北京大学出版社, 2003:53-54. XIAO X N. Modern numerical methods[M]. Beijing:Peking University Press, 2003:53-54(in Chinese). [28] PARK C. Calculation of stagnation-point heating rates associated with stardust vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(1):24-32. [29] MILOS F S, GASCH M J, PRABHU D K. Conformal phenolic impregnated carbon ablator arcjet testing, ablation, and thermal response[J]. Journal of Spacecraft and Rockets, 2015, 52(3):804-812. [30] MOHAMMADIUN H, MOHAMMADIUN M. Numerical modeling of charring material ablation with considering chemical-reaction effects, mass transfer and surface heat transfer[J]. Arabian Journal for Science and Engineering, 2013, 38(9):2533-2543. [31] DEC J, BRAUN R. An approximate ablative thermal protection system sizing tool for entry system design[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006. |