航空学报 > 2023, Vol. 44 Issue (S2): 729469-729469   doi: 10.7527/S1000-6893.2023.29469

基于气固界面热化学反应模型的热防护材料烧蚀过程多尺度耦合计算方法

叶致凡1, 赵瑾1(), 李志辉2, 孙向春1, 文东升1   

  1. 1.北京航空航天大学 航空科学与工程学院,北京  100083
    2.中国空气动力研究与发展中心,绵阳  621000
  • 收稿日期:2023-08-15 修回日期:2023-08-24 接受日期:2023-09-19 出版日期:2023-10-17 发布日期:2023-10-13
  • 通讯作者: 赵瑾 E-mail:jin.zhao@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(52006004)

Multiscale coupling simulation method for thermal protection material ablation based on thermochemical interfacial reactive model

Zhifan YE1, Jin ZHAO1(), Zhihui LI2, Xiangchun SUN1, Dongsheng WEN1   

  1. 1.School of Aeronautic Science and Engineering,Beihang University,Beijing  100083,China
    2.China Aerodynamics Research and Development Center,Mianyang  621000,China
  • Received:2023-08-15 Revised:2023-08-24 Accepted:2023-09-19 Online:2023-10-17 Published:2023-10-13
  • Contact: Jin ZHAO E-mail:jin.zhao@buaa.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52006004)

摘要:

在高超声速流动条件下,由于高温热化学非平衡效应及气固界面非均相化学反应等复杂因素,考虑防热材料气固边界化学反应过程对气动热环境影响的精细化数值预测十分困难。特别是针对烧蚀型热防护材料,由于在气固界面处会与非平衡来流发生物理化学相互作用,产生热阻塞、质量引射等复杂壁面效应,严重制约了材料热响应及气动热环境的预测精度。对此,构建了一种热防护材料烧蚀过程的多尺度耦合计算方法,不仅能够获得基于材料烧蚀热化学反应动力学界面模型的烧蚀后退速率及外形瞬态变化过程,同时还可获得材料烧蚀产物及化学反应热边界对气动热/力环境的影响。首先对该多尺度耦合模拟方法的构建及原理进行了详细描述,然后以典型酚醛树脂基复合材料及钝头体外形为例,获得了其典型飞行工况下烧蚀后退速率及气动热环境计算结果,最后通过将计算结果与文献数据进行对比,验证了该多尺度耦合计算方法的有效性。本文构建的这种基于气固界面热化学反应模型的多尺度耦合模拟方法不仅适用于酚醛树脂复合材料研究,还可以拓展应用至其他防热材料及气动环境条件,为提高防热材料高温热响应及高超声速气动热特性的预测精度提供了一定的理论及方法基础。

关键词: 热防护材料, 气固界面, 多尺度耦合计算, 反应分子动力学, 烧蚀

Abstract:

Under hypersonic flow conditions, due to the strong high-temperature thermochemical non-equilibrium effect and various heterogeneous reactions occurring at the gas-solid interface, to achieve the aerothermal environment and material thermal response prediction with high accuracy becomes very difficult. In particular to the ablative Thermal Protection Material (TPM), thermal blockage and gas blowing effect may be caused by the physical and chemical interactions between TPM interface and the non-equilibrium flow environment, significantly affecting the aerothermal environment and material thermal response. In this work, a multiscale coupling simulation framework is established for the TPM ablation process, which not only can achieve the TPM recession rate and the transient re-shaping process of vehicles based on the thermochemical interfacial reactive model, but also is capable to capture the ablation generation development at the interface and its effect on the aero-thermal/-dynamics environments. Firstly, the establishment of the multiscale coupling simulation framework is described with details, followed by a benchmarking validation using a blunt body with Phenolic Resin (PR) as TPM. The results of the calculated ablation recession rate and the transient aerothermal environment are compared with literature to demonstrate the methodology validity. Such a multiscale coupling simulation method for TPM ablation based on the thermochemical interfacial reactive model is not only suitable for the PR material application, but can also be extended to other typical aerothermal environment prediction, which is of great help predicting hypersonic aerothermodynamic characteristics and improving the understanding of various TPM/non-equilibrium flow interfacial phenomena.

Key words: thermal protection materials, gas-solid interface, multiscale coupling simulation, reactive molecular dynamics, ablation

中图分类号: