1 |
程晓丽, 艾邦成, 王强. 基于分子平均自由程的热流计算壁面网格准则[J]. 力学学报, 2010, 42(6): 1083-1089.
|
|
CHENG X L, AI B C, WANG Q. A wall grid scale criterion based on the molecule mean free path for the wall heat flux computations by the Navier-Stokes equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1083-1089 (in Chinese).
|
2 |
张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600.
|
|
ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese).
|
3 |
HOFFMANN K, SIDDIQUI M, CHIANG S. Difficulties associated with the heat flux computations of high speed flows by the Navier-Stokes equations[C]∥ 29th Aerospace Sciences Meeting. Reston: AIAA, 1991.
|
4 |
MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334.
|
5 |
PAPADOPOULOS P, VENKATAPATHY E, PRABHU D, et al. Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis and testing[J]. Applied Mathematical Modelling, 1999, 23(9): 705-735.
|
6 |
KLOPFER G, YEE H. Viscous hypersonic shock-on-shock interaction on blunt cowl lips[C]∥ 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
|
7 |
潘沙, 冯定华, 丁国昊, 等. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报, 2010, 31(3): 493-499.
|
|
PAN S, FENG D H, DING G H, et al. Grid dependency and convergence of hypersonic aerothermal simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 493-499 (in Chinese).
|
8 |
张翔, 阎超, 杨威, 等. 高超声速飞行器气动热网格依赖性研究[J]. 战术导弹技术, 2016(3): 21-27.
|
|
ZHANG X, YAN C, YANG W, et al. Investigation of the grid-dependency in heat transfer simulation for hypersonic vehicle[J]. Tactical Missile Technology, 2016(3): 21-27 (in Chinese).
|
9 |
闫文辉, 任立磊. 计算网格对气动力气动热数值模拟影响的研究[J]. 航空计算技术, 2017, 47(2): 1-4.
|
|
YAN W H, REN L L. Grid study on numerical simulation of aerodynamic flowfield[J]. Aeronautical Computing Technique, 2017, 47(2): 1-4 (in Chinese).
|
10 |
QU F. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle[J]. Acta Astronautica, 2018, 147: 412-420.
|
11 |
ZHAO Y P, HU Y M, HUANG H M. Numerical analysis of convergence property of heat flux next to the wall[J]. Acta Astronautica, 2019, 155: 230-237.
|
12 |
QU F. A grid strategy for predicting the space plane's hypersonic aerodynamic heating loads[J]. Aerospace Science and Technology, 2019, 86: 659-670.
|
13 |
YANG J L, LIU M. A wall grid scale criterion for hypersonic aerodynamic heating calculation[J]. Acta Astronautica, 2017, 136: 137-143.
|
14 |
REN X, YUAN J Y, HE B J, et al. Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime[J]. Journal of Fluid Mechanics, 2019, 881: 585-601.
|
15 |
HUANG H M, HU Y M. New criterion for first grid spacing off wall surface in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2019, 56(1): 171-178.
|
16 |
张亮, 程晓丽, 艾邦成. 高超声速气动热数值模拟法向网格准则[J]. 力学与实践, 2014, 36(6): 722-727, 741.
|
|
ZHANG L, CHENG X L, AI B C. Normal grid rule for hypersonic heat flux numerical simulation[J]. Mechanics in Engineering, 2014, 36(6): 722-727, 741 (in Chinese).
|
17 |
王浩. 高超音速流动数值模拟与热流数值计算[D]. 北京: 北京航空航天大学, 2002: 77-82.
|
|
WANG H. Numerical simulation of hypersonic flow and numerical calculation of heat flux[D]. Beijing: Beihang University, 2002: 77-82 (in Chinese).
|
18 |
谢锦睿, 吴颂平, 王浩. 高超音速热流数值计算中的误差匹配原则[J]. 北京航空航天大学学报, 2005, 31(3): 274-277.
|
|
XIE J R, WU S P, WANG H. Error matching principle for heat transfer calculations in hypersonic flow simulations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 274-277 (in Chinese).
|
19 |
方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性[J]. 物理学报, 2020, 69(21): 214401.
|
|
FANG F, BAO L, TONG B G. Heat transfer characteristics of shear layer impinging on wall based on oblique stagnation-point model[J]. Acta Physica Sinica, 2020, 69(21): 214401 (in Chinese).
|
20 |
WHITE F M. Viscous fluid flow[M]. 3rd ed. New York: McGraw-Hill, 2006: 26, 225-228, 505-506.
|
21 |
TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12): 653-664.
|
22 |
张涵信. 关于CFD高精度保真的数值模拟研究[J]. 空气动力学学报, 2016, 34(1): 1-4.
|
|
ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2016, 34(1): 1-4 (in Chinese).
|
23 |
GNOFFO P A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows: NASA TP-2953[R]. Washington, D.C.: NASA, 1990.
|
24 |
HOLDEN M, MOSELLE J, WIETING A, et al. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow[C]∥ 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
|
25 |
MUYLAERT J, WALPOT L, HAEUSER J, et al. Standard model testing in the European High Enthalpy Facility F4 and extrapolation to flight[C]∥ 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992.
|
26 |
王勇达. 典型外形高超声速气动热数值模拟的网格无关性研究[D]. 绵阳: 西南科技大学, 2020: 16-63.
|
|
WANG Y D. Study on grid independence in numerical simulation of hypersonic aerodynamic heat for typical configuration[D]. Mianyang: Southwest University of Science and Technology, 2020: 16-63 (in Chinese).
|
27 |
黎作武. 近似黎曼解对高超声速气动热计算的影响研究[J]. 力学学报, 2008, 40(1): 19-25.
|
|
LI Z W. Study on the dissipative effect of approximate Riemann solver on hypersonic heat flux simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 19-25 (in Chinese).
|
28 |
周伟江, 姜贵庆. 迎风TVD格式在粘性流计算中的应用研究与改进[J]. 计算物理, 1999, 16(4): 401-408.
|
|
ZHOU W J, JIANG G Q. The study and modification of upwind TVD scheme for computing viscous flows[J]. Chinese Journal of Computation Physics, 1999, 16(4): 401-408 (in Chinese).
|