1 |
SEONG Y H, BAEK C, KIM J H, et al. Evaluation of oxidation behaviors of HfC-SiC ultra-high temperature ceramics at above 2500℃ via oxyacetylene torch[J]. Ceramics International, 2018, 44(7): 8505-8513.
|
2 |
杨姗洁, 严旭东, 郭洪波. CMAS环境下热障涂层的损伤机理及防护策略[J]. 航空学报, 2022, 43(10): 527613.
|
|
YANG S J, YAN X D, GUO H B. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527613 (in Chinese).
|
3 |
郑辉, 邱雷, 袁慎芳, 等. C/C热防护结构高温气流损伤导波监测实验方法[J]. 航空学报, 2022, 43(8):225659.
|
|
ZHENG H, QIU L, YUAN S F, et al. Experimental method of guided wave monitoring for high temperature airflow damage of C/C thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 225659 (in Chinese).
|
4 |
李晖, 吕海宇, 邹泽煜, 等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642.
|
|
LI H, LYU H Y, ZOU Z Y, et al. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425642 (in Chinese).
|
5 |
李定骏, 杨镠育, 孙帆, 等. 预热温度对热障涂层表面裂纹形成的影响[J]. 航空学报, 2022, 43(6): 526184.
|
|
LI D J, YANG L Y, SUN F, et al. Effect of preheating temperature on formation of surface cracks in thermal barrier coating system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526184 (in Chinese).
|
6 |
VAN WIE D M, DREWRY D G, KING D E, et al. The hypersonic environment: Required operating conditions and design challenges[J]. Journal of Materials Science, 2004, 39(19): 5915-5924.
|
7 |
杨震晓, 倪立勇, 杨杰, 等. Tb4O7掺杂Cr2O3-TiO2基高发射率涂层结构及辐射性能研究[J]. 表面技术, 2018, 47(5): 154-158.
|
|
YANG Z X, NI L Y, YANG J, et al. Microstructure and radiation property of Tb4O7 doped Cr2O3-TiO2-based high emissivity coating[J]. Surface Technology, 2018, 47(5): 154-158 (in Chinese).
|
8 |
吴清仁, 吴建青, 文壁璇. SiC换热器材料热物理性质的研究[J]. 无机材料学报, 1996, 11(2): 333-337.
|
|
WU Q R, WU J Q, WEN B X. Studies on the thermophysical properties of SiC heat exchanger materials[J]. Journal of Inorganic Materials, 1996, 11(2): 333-337 (in Chinese).
|
9 |
AGOSTINI B, FABBRI M, PARK J E, et al. State of the art of high heat flux cooling technologies[J]. Heat Transfer Engineering, 2007, 28(4): 258-281.
|
10 |
JIANG D F, LONG J Y, CAI M Y, et al. Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining[J]. Materials and Design, 2017, 114: 185-193.
|
11 |
曹泷, 杨辉, 吴学红, 等. 微纳结构沸腾表面构建及传热性能的研究进展[J]. 微纳电子技术, 2020, 57(12): 982-991.
|
|
CAO S, YANG H, WU X H, et al. Research progress of the construction and heat transfer characteristics of boiling surfaces with micro-nano structures[J]. Micronanoelectronic Technology, 2020, 57(12): 982-991 (in Chinese).
|
12 |
XU B, OOTI K T, WONG N T, et al. Experimental investigation of flow friction for liquid flow in microchannels[J]. International Communications in Heat and Mass Transfer, 2000, 27(8): 1165-1176.
|
13 |
JUDY J, MAYNES D, WEBB B W. Characterization of frictional pressure drop for liquid flows through microchannels[J]. International Journal of Heat and Mass Transfer, 2002, 45(17): 3477-3489.
|
14 |
HAO P F, HE F, ZHU K Q. Flow characteristics in a trapezoidal silicon microchannel[J]. Journal of Micromechanics and Microengineering, 2005, 15(6): 1362-1368.
|
15 |
MCHALE J P, GARIMELLA S V. Heat transfer in trapezoidal microchannels of various aspect ratios[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3): 365-375.
|
16 |
ERGU O B, SARA O N, YAPıCı S, et al. Pressure drop and point mass transfer in a rectangular microchannel[J]. International Communications in Heat and Mass Transfer, 2009, 36(6): 618-623.
|
17 |
CHIU H C, JANG J H, YEH H W, et al. The heat transfer characteristics of liquid cooling heatsink containing microchannels[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3): 34-42.
|
18 |
张加波, 张开虎, 范洪涛, 等. 纤维复合材料激光加工进展及航天应用展望[J]. 航空学报, 2022, 43(4): 525735.
|
|
ZHANG J B, ZHANG K H, FAN H T, et al. Progress in laser processing of fiber composite materials and prospects of its applications in aerospace[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525735 (in Chinese).
|
19 |
JIANG D F, LONG J Y, HAN J P, et al. Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures[J]. Materials Science and Engineering: A, 2017, 696: 429-436.
|
20 |
WANG S L, LI K Z, LI H J, et al. Effects of microstructures on the ablation behaviors of ZrC deposited by CVD[J]. Surface and Coatings Technology, 2014, 240: 450-455.
|
21 |
GAO Z T, MA Z, LIU Q, et al. Anti-ablation performance of plasma sprayed ZrB2/SiC coatings on C/C substrates and the influence of a chemical vapor deposited SiC interlayer[J]. Materials Today Communications, 2023, 36: 106591.
|
22 |
ZHANG Y L, HU H, REN J C, et al. Effect of the surface microstructure of SiC inner coating on the bonding strength and ablation resistance of ZrB2-SiC coating for C/C composites[J]. Ceramics International, 2016, 42(16): 18657-18665.
|
23 |
AGARWAL S, KOYANAGI T, BHATTACHARYA A, et al. Neutron irradiation-induced microstructure damage in ultra-high temperature ceramic TiC[J]. Acta Materialia, 2020, 186: 1-10.
|
24 |
ZHANG Y H, LUNGHI A, SANVITO S. Pushing the limits of atomistic simulations towards ultra-high temperature: A machine-learning force field for ZrB2 [J]. Acta Materialia, 2020, 186: 467-474.
|
25 |
LI L, LI H J, SHEN Q L, et al. Oxidation behavior and microstructure evolution of SiC-ZrB2-ZrC coating for C/C composites at 1673K[J]. Ceramics International, 2016, 42(11): 13041-13046.
|
26 |
LI L, LI H J, LIN H J, et al. Comparison of the oxidation behaviors of SiC coatings on C/C composites prepared by pack cementation and chemical vapor deposition[J]. Surface and Coatings Technology, 2016, 302: 56-64.
|