收稿日期:
2022-07-13
修回日期:
2022-07-27
接受日期:
2022-08-22
出版日期:
2022-12-25
发布日期:
2022-08-31
通讯作者:
庄宇
E-mail:y_zhuang1@163.com
基金资助:
Shouchao HU, Yu ZHUANG(), Xian LI, Tao JIANG
Received:
2022-07-13
Revised:
2022-07-27
Accepted:
2022-08-22
Online:
2022-12-25
Published:
2022-08-31
Contact:
Yu ZHUANG
E-mail:y_zhuang1@163.com
Supported by:
摘要:
为满足高超声速飞行器气动热环境预测与评估技术发展需要,开展了以地面试验数据为基础的高超声速气动热标模研制工作。标模试验涵盖了不同马赫数Ma(6,8,10,12)、雷诺数Re、总温T0、前缘半径、攻角等,在Ma、Re模拟基础上,进行T0模拟,并详细分析了流场参数的不确定度,Ma、Re、T0、总压P0不确定度分别优于±1%、±10%、±6%、 ±3%。设计了表征二维流动的“平板-双楔”气动热标模HyHERM-I,采用薄膜热电阻、热电偶传感器测量模型表面热流及边界流态,并结合高速纹影分析了分离区流动特点。试验结果表明:驻点热流重复性测量精度优于±5%。尖前缘、大压缩角下拐角分离区增大。尖前缘、高雷诺数、低马赫数状态下边界层流动更易转捩并发展为湍流,同时转捩和湍流可在一定程度上抑制流动分离并减小分离区。HyHERM-I气动热标模试验数据丰富、详实,可为数值方法验证与确认、试验技术验证、天地相关性分析以及高超声速飞行器设计等提供参考。
中图分类号:
胡守超, 庄宇, 李贤, 江涛. 高超声速气动热标模HyHERM-Ⅰ试验[J]. 航空学报, 2022, 43(S2): 233-248.
Shouchao HU, Yu ZHUANG, Xian LI, Tao JIANG. Hypersonic aero-heating environment research model HyHERM-I: Experiment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 233-248.
表 2
流场参数
参数 | 流场 | 偏差(不确定度)/% | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
总温T0/K | 640 | 1 540 | 1 540 | 940 | 930 | 1 540 | ±6 | |
总压P0/MPa | 2.14 | 7.37 | 11.12 | 3.85 | 22.59 | 17.17 | ±3 | |
马赫数Ma | 5.7 | 8.0 | 10.1 | 10.0 | 10.4 | 12.1 | ±1 | |
单位雷诺数Re/m-1 | 1.3×107 | 4.0×106 | 3.2×106 | 3.1×106 | 1.7×107 | 3.1×106 | ±10 | |
静温T/K | 86 | 121 | 78 | 46 | 42 | 55 | ||
静压P/Pa | 1 841 | 659 | 214 | 88 | 397 | 98 | ||
密度ρ/(kg·m-3) | 7.20×10-2 | 1.84×10-2 | 9.24×10-3 | 6.40×10-3 | 3.16×10-2 | 6.00×10-3 | ||
自由流速度U/(m·s-1) | 1 079 | 1 792 | 1 817 | 1 385 | 1 379 | 1 830 | ||
驻点热流测量值/(W·cm-2) | 26.43 | 97.32 | 62.13 | 20.46 | 43.98 | 51.39 | ±5 | |
F-R_Newton | 计算值/(W·cm-2) | 25.27 | 88.74 | 63.83 | 19.16 | 41.64 | 51.75 | |
与试验值偏差/% | 4.39 | 8.82 | -2.74 | 6.35 | 5.32 | -0.70 | ||
F-R_Stokes | 计算值/(W·cm-2) | 28.15 | 99.93 | 72.03 | 21.52 | 46.77 | 58.47 | |
与试验值偏差/% | -6.51 | -2.68 | -15.93 | -5.18 | -6.34 | -13.78 |
表 4
分离区特征统计
试验状态 | 分离点距拐角长度Ls/mm | 再附点距拐角长度Lr/mm | 分离激波角βss/(°) | 主激波角βms/(°) | |
---|---|---|---|---|---|
1 | 上表面 | 46 | 17 | 21.5 | 9.0 |
下表面 | 25 | 10 | 11.5 | 13.4 | |
2 | 上表面 | 78 | 58 | 20.1 | |
下表面 | 24 | 11 | 20.0 | 13.6 | |
3 | 上表面 | 75 | 29 | 18.6 | 8.0 |
下表面 | 27 | 16 | 17.6 | 8.4 | |
4 | 上表面 | 115 | 66 | 17.0 | |
下表面 | 32 | 14 | 20.0 | 12.7 | |
5 | 上表面 | 64 | 32 | 20.1 | 6.3 |
下表面 | 42 | 25 | 16.9 | 7.2 | |
6 | 上表面 | 135 | 61 | 14.0 | |
下表面 | 32 | 25 | 19.7 | ||
7 | 上表面 | 81 | 39 | 17.9 | 6.4 |
下表面 | 71 | 28 | 16.7 | 7.0 | |
8 | 上表面 | 151 | 69 | 11.1 | |
下表面 | 50 | 33 | 19.7 | ||
9 | 上表面 | 61 | 23 | 18.3 | 7.7 |
下表面 | 38 | 16 | 11.3 | 3.4 | |
10 | 上表面 | 145 | 66 | 15.4 | |
下表面 | 25 | 17 | 19.2 | 11.0 | |
11 | 上表面 | 80 | 46 | 19.0 | 7.3 |
下表面 | 40 | 27 | 15.3 | 4.7 | |
12 | 上表面 | 133 | 85 | 12.2 | |
下表面 | 42 | 26 | 20.0 | ||
13 | 上表面 | 179 | 66 | 13.3 | |
下表面 | 46 | 17 | 16.7 | 7.2 | |
14 | 上表面 | 180 | 70 | 13.5 | |
下表面 | 56 | 28 | 12.3 | 6.7 | |
15 | 上表面 | 152 | 63 | 11.0 | |
下表面 | 58 | 24 | 14.3 | 8.5 |
表 5
HyHERM-Ⅰ前缘热流测量结果
流场 | 半径R/mm | 攻角α/(°) | 流场前缘热流值/(W·cm-2) | 测量 平均值/(W·cm-2) | F-R_Newton | F-R_Stokes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 计算值/(W·cm-2) | 偏差/% | 计算值/(W·cm-2) | 偏差/% | ||||
1 | 5 | 0 | 34.16 | 34.42 | 35.14 | 35.88 | 36.76 | 34.98 | 35.72 | 35.29 | 30.95 | 12 | 34.48 | 2 |
-15 | 34.06 | 36.19 | 34.07 | 38.30 | 36.71 | 36.52 | 33.32 | 35.60 | ||||||
2 | 0 | 125.46 | 118.06 | 120.47 | 121.02 | 119.29 | 125.24 | 120.65 | 121.46 | 108.68 | 11 | 122.39 | -1 | |
-15 | 124.38 | 115.77 | 116.75 | 121.04 | 114.58 | 124.23 | 123.38 | 120.02 | ||||||
3 | 0 | 74.25 | 72.10 | 73.14 | 74.11 | 74.66 | 76.45 | 74.23 | 74.13 | 78.18 | -5 | 88.22 | -19 | |
-15 | 70.52 | 67.59 | 70.22 | 70.95 | 69.51 | 71.31 | 70.80 | 70.13 | ||||||
4 | 0 | 26.37 | 25.39 | 25.58 | 26.49 | 25.95 | 27.08 | 25.69 | 26.08 | 23.47 | 10 | 26.36 | -1 | |
-15 | 25.72 | 24.74 | 25.51 | 25.61 | 25.02 | 25.65 | 24.83 | 25.30 | ||||||
5 | 0 | 54.26 | 53.82 | 54.83 | 54.64 | 53.18 | 54.86 | 54.13 | 54.25 | 51.00 | 6 | 57.28 | -6 | |
-15 | 51.63 | 50.11 | 49.96 | 50.70 | 50.54 | 50.00 | 50.49 | 50.49 | ||||||
6 | 0 | 62.83 | 62.96 | 63.35 | 63.17 | 64.85 | 63.68 | 63.01 | 63.41 | 63.38 | 0 | 71.61 | -13 | |
-15 | 61.59 | 60.76 | 61.42 | 62.01 | 60.92 | 62.75 | 61.39 | 61.55 | ||||||
3 | 1 | 0 | 183.48 | 180.01 | 193.62 | 181.00 | 192.32 | 186.27 | 186.12 | 174.81 | 6 | 197.26 | -6 | |
4 | 0 | 62.85 | 59.13 | 69.34 | 69.10 | 69.10 | 64.21 | 65.62 | 52.47 | 20 | 58.93 | 10 | ||
5 | 0 | 130.65 | 127.90 | 141.69 | 144.47 | 145.50 | 133.89 | 137.35 | 114.04 | 17 | 128.08 | 7 |
1 | 战培国, 罗月培. 飞行器风洞试验标模体系研究初探[J]. 标准科学, 2011(11): 28-31. |
ZHAN P G, LUO Y P. Primary research on the standard system of air vehicle calibration models used in wind tunnel test[J]. Standard Science, 2011(11): 28-31 (in Chinese). | |
2 | OBERKAMPF W L, SINDIR M N, CONLISK A T. AIAA guide for the verification and validation of computational fluid dynamics simulations[M]. Reston: AIAA, 1998. |
3 | 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2): 279-288. |
DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2): 279-288 (in Chinese). | |
4 | 赵炜, 陈江涛, 肖维, 等. 国家数值风洞(NNW)验证与确认系统关键技术研究进展[J]. 空气动力学学报, 2020, 38(6): 1165-1172. |
ZHAO W, CHEN J T, XIAO W, et al. Advances in the key technologies of verification and validation system of National Numerical Windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1165-1172 (in Chinese). | |
5 | 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. |
YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293 (in Chinese). | |
6 | 涂国华, 万兵兵, 陈坚强, 等. MF-1钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学: 物理学 力学 天文学, 2019, 49(12): 118-128. |
TU G H, WAN B B, CHEN J Q, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(12): 118-128 (in Chinese). | |
7 | OPALKA K O. Force tests of the hypersonic ballistic standard models HB-1 and HB-2: AD 649254 [R]. Pairs: AGARD, 1966. |
8 | MATTHEWS R K, TRIMMER L L. Force and pressure tests of an AGARD calibration model B at Mach number of 10: AD 430701 [R]. Pairs: AGARD, 1964. |
9 | HARTZUIKER J P. A review of measurements on AGARD calibration model B in the Mach number range from 1.4 to 8: NLR ReportMp. 200 [R].Pairs: AGARD, 1961. |
10 | COATS J D. Force tests of on AGARD calibration model B at Ma=2.5 to 6.0: AEDC-TN-60-182 [R].Pairs: AGARD, 1960. |
11 | KAYSER L D, FITCHC R. Force and pressure tests of an AGARD calibration model B at a Mach number of 8: AEDC-TN-60-34 [R].Pairs: AGARD, 1960. |
12 | SIMS J L. Tables for supersonic flow round right circular cones at small angle of attack: NASA SP-3007[R].Washington, D.C.: NASA, 1964. |
13 | GATLIN G, RIVERS M, GOODLIFF S, et al. Experimental investigation of the DLR-F6 transport configuration in the national transonic facility (invited)[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
14 | BURNER A, GOAD W, MASSEY E, et al. Wing deformation measurements of the DLR-F6 transport configuration in the national transonic facility (invited)[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
15 | RUDNIK R, SITZMANN M, GODARD J L, et al. Experimental investigation of the wing-body juncture flow on the DLR-F6 configuration in the ONERA S2MA facility[C]∥ 27th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2009. |
16 | RIVERS M, HUNTER C, GATLIN G. Support system effects on the DLR-F6 transport configuration in the national transonic facility[C]∥ 27th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2009. |
17 | 总装备部. 高超声速风洞气动力试验方法 [S].北京: 总装备部军标出版发行部, 2002. |
General Armament Department. GJB4399-2002 aerodynamics tests method of hypersonic win tunnel[J]. Beijing: General Armament Department Military Standard Publishing Department, 2002 (in Chinese). | |
18 | 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739. |
CHEN J Q, WU X J, ZHANG J, et al. FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel(NNW) project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739 (in Chinese). | |
19 | 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 625718. |
LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625718 (in Chinese). | |
20 | 赵童. 考虑结构重量/变形的超临界机翼气动优化设计[D].北京: 清华大学, 2016: 88-90. |
ZHAO T. Aerodynamic optimization design of supercritical wing based on structure weight/deformation performance[D]. Beijing: Tsinghua University, 2016: 88-90 (in Chinese). | |
21 | 余永刚, 周铸, 黄江涛, 等. 单通道客机气动标模CHN-T1设计[J]. 空气动力学学报, 2018, 36(3): 505-513. |
YU Y G, ZHOU Z, HUANG J T, et al. Aerodynamic design of a standard model CHN-T1 for single-aisle passenger aircraft[J]. Acta Aerodynamica Sinica, 2018, 36(3): 505-513 (in Chinese). | |
22 | 李伟, 王运涛, 洪俊武, 等. 采用TRIP3.0模拟CHN-T1模型气动特性[J]. 空气动力学学报, 2019, 37(2): 272-279. |
LI W, WANG Y T, HONG J W, et al. Aerodynamic characteristics simulation of CHN-T1 model with TRIP3.0[J]. Acta Aerodynamica Sinica, 2019, 37(2): 272-279 (in Chinese). | |
23 | 李强, 刘大伟, 许新, 等. CHN-T1标模2.4米风洞气动特性试验研究[J]. 空气动力学学报, 2019, 37(2): 337-344. |
LI Q, LIU D W, XU X, et al. Experimental study of aerodynamic characterictics of CHN-T1 standard model in 2.4 m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2019, 37(2): 337-344 (in Chinese). | |
24 | 李浩然, 李亚坤, 张宇飞, 等. CHN-T1标模的数值计算及气动特性研究[J]. 空气动力学学报, 2019, 37(2): 329-336. |
LI H R, LI Y K, ZHANG Y F, et al. Numerical simulation and aerodynamic performance analysis of the standard model CHN-T1[J]. Acta Aerodynamica Sinica, 2019, 37(2): 329-336 (in Chinese). | |
25 | 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报, 2022, 43(2): 124956. |
LI Q, WAN B B, YANG K, et al. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124956 (in Chinese). | |
26 | 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020, 41(12): 124098. |
CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over bodies with blunt nosetip[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124098 (in Chinese). | |
27 | 师昆仑, 邱云龙, 陈伟芳, 等. 传感器局部温度差异对压缩拐角热流测量的影响[J]. 航空学报, 2020, 41(12): 124055. |
SHI K L, QIU Y L, CHEN W F, et al. Influence of local temperature difference of sensors on heat flow measurement of compression corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124055 (in Chinese). | |
28 | 朱志斌, 尚庆, 沈清. 高超声速边界层转捩模型横流效应修正与应用[J]. 航空学报, 2022, 43(7): 125685. |
ZHU Z B, SHANG Q, SHEN Q. Crossflow modification of transition model for hypersonic boundary layer and its application[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125685 (in Chinese). | |
29 | EAST R A, HUTT G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft and Rockets, 1988, 25(3): 225-233. |
30 | 陈河梧. 超声速高超声速风洞测力数据衔接性的研究[J]. 空气动力学学报, 2000, 18(3): 345-349. |
CHEN H W. Investigation on the link-up between the aerodynamic force data measured in supersonic and hypersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2000, 18(3): 345-349 (in Chinese). | |
31 | 陈河梧. 高超声速风洞测力数据的关联研究[J]. 流体力学实验与测量, 2002, 16(3): 14-18, 25. |
CHEN H W. Correlation study on data of force-measuring test in hypersonic wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(3): 14-18, 25 (in Chinese). | |
32 | JONES D J. Tables of inviscid supersonic flow about circular cones at incidence, γ=1.4: AD 6987791[R]. Pairs: AGARD, 1979. |
33 | 张婷婷, 叶瑞, 姜维, 等. 高超声速风洞HSCM系列标准模型气动力实验数据[J]. 气体物理, 2021, 6(4): 57-65. |
ZHANG T T, YE R, JIANG W, et al. Aerodynamic test data of HSCM calibration models in hypersonic wind tunnel[J]. Physics of Gases, 2021, 6(4): 57-65 (in Chinese). | |
34 | 李素循. 典型外形高超声速流动特性[M]. 北京: 国防工业出版社, 2007. |
LI S X. Typical hypersonic flow characteristics[M]. Beijing: National Defense Industry Press, 2007 (in Chinese). | |
35 | ZHAO J S, LIU S, ZHAO L, et al. Numerical study of total temperature effect on hypersonic boundary layer transition[J]. Physics of Fluids, 2019, 31(11): 114105. |
36 | 赵金山, 张志刚, 石义雷, 等. 高超声速飞行器气动热关联换算方法研究[J]. 力学学报, 2018, 50(5): 1235-1245. |
ZHAO J S, ZHANG Z G, SHI Y L, et al. Research on the conversion method of aeroheating environment of hypersonic vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1235-1245 (in Chinese). | |
37 | 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8): 122740. |
LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122740 (in Chinese). | |
38 | BUSHNELL D M, WEINSTEIN L M. Correlation of peak heating for reattachment of separated flows[J]. Journal of Spacecraft and Rockets, 1968, 5(9): 1111-1112. |
39 | 时晓天, 吕蒙, 赵渊, 等. 激波/湍流边界层干扰的流动控制技术综述[J]. 航空学报, 2022, 43(1): 625929. |
SHI X T, LYU M, ZHAO Y, et al. Flow control technique for shock wave/turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625929 (in Chinese). | |
40 | 张昊元, 孙东, 邱波, 等. 湍动能在激波/边界层干扰流动中的影响[J]. 航空学报, 2022, 43(7): 125504. |
ZHANG H Y, SUN D, QIU B, et al. Influence of turbulent kinetic energy on shock wave/boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125504 (in Chinese). | |
41 | FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aerospace Sciences, 1958, 25(2): 73-85. |
42 | STOKES G G. Mathematical and physical papers[M].London: Cambridge University Press,1880. |
[1] | 王雪鹤, 柴春硕, 邢世龙, 樊枫, 黄水林. 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024, 45(9): 529960-529960. |
[2] | 李海星, 周峰, 颜巍, 白峰, 赵克良. 砂纸冰对民机平尾气动特性的影响[J]. 航空学报, 2024, 45(2): 128657-128657. |
[3] | 李学良, 李创创, 苏伟, 吴杰. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627-128627. |
[4] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[5] | 曾繁宇, 邱云龙, 曹占伟, 张伦, 陈伟芳. 超声速湍流边界层阵列式微吹气流动控制与减阻特性[J]. 航空学报, 2023, 44(S2): 729396-729396. |
[6] | 刘宏康, 陈坚强, 向星皓, 赵雅甜. 改进k-ω-γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报, 2023, 44(6): 126868-126868. |
[7] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[8] | 王浩祥, 肖尧, 张凯凯, 李广利, 常思源, 田中伟, 崔凯. 机体尾缘形状对高压捕获翼构型亚声速特性影响[J]. 航空学报, 2023, 44(6): 127215-127215. |
[9] | 孙士珺, 李晓龙, 刘艳明, 王建华, 王松涛. 宽速域来流对超声通流风扇叶型气动性能的影响[J]. 航空学报, 2023, 44(21): 528523-528523. |
[10] | 宋家辉, 许爱国, 苗龙, 廖煜淦, 梁福文, 田丰, 聂明卿, 王宁飞. 激波/平板层流边界层干扰熵增特性[J]. 航空学报, 2023, 44(21): 528520-528520. |
[11] | 王梦格, 何小明, 王娟娟, 张悦, 汪昆, 谭慧俊, 李留刚. 基于振荡式涡流发生器的激波/边界层干扰控制方法[J]. 航空学报, 2023, 44(20): 128503-128503. |
[12] | 王迪, 冷岩, 杨龙, 韩忠华, 钱战森. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318-626318. |
[13] | 田珊珊, 金亮, 杜兆波, 钟翔宇, 黄伟, 刘远洋. 基于鼓包的激波/边界层干扰控制研究进展[J]. 航空学报, 2023, 44(18): 28411-028411. |
[14] | 王粤, 汪运鹏, 姜宗林. 激波风洞两级入轨飞行器纵向级间分离试验技术[J]. 航空学报, 2023, 44(17): 128126-128126. |
[15] | 李灿民, 黄河峡, 梁钢, 吕靖昊, 蔡佳, 谭慧俊. 基于后掠唇罩的入射激波/边界层干扰流动控制方法[J]. 航空学报, 2023, 44(16): 128091-128091. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学