[1] ANDERSON J D. Fundamentals of aerodynamics[M]. 6th ed. New York:McGraw-Hill Education, 2017:624-630. [2] LIEPMANN H W, ROSSHKO A. Elements of gasdynamics[M]. New York:John Wiley & Sons, 1957:440-441. [3] Ames Aeronautical Laboratory. Equations, tables and charts for compressible flow:NACA Report 1135[R]. Washington, D. C.:NACA, 1953. [4] BUSHNELL D M. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36:81-96. [5] LOVELL D A. European research to reduce drag for supersonic transport aircraft:AIAA-1999-3100[R]. Reston, VA:AIAA, 1999. [6] ALONSO J J, COLONNO M R. Multidisciplinary optimization with applications to sonic-boom Minimization[J]. Annual Review of Fluid Mechanics, 2012, 44:505-526. [7] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1):121458. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121458(in Chinese). [8] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7):122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):122039(in Chinese). [9] TAUB A H. John von Neumann collected works (Volume VI):Theory of games, astrophysics, hydrodynamics and meteorology[M]. London:Pergamon Press, 1963:178-202. [10] CHEN Z J, LIN J, BAI C Y, et al. A self-similar solution of a curved shock wave and its time-dependent force variation for a starting flat plate airfoil in supersonic flow[J]. Chinese Journal of Aeronautics, 2018, 31(2):205-213. [11] 杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(13):541-587. YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(13):541-587(in Chinese). [12] SHEN H, WEN C Y. Theoretical investigation of shock stand-off distance for non-equilibrium flows over spheres[J]. Chinese Journal of Aeronautics, 2018, 31(5):990-996. [13] 乐嘉陵, 曹文样, 叶希超, 等. 双马赫反射的数值模拟与光学干涉定量测量的比较(Ms=4. 62)[J]. 气动实验与测量控制, 1993, 7(1):22-31. LE J L, CAO W X, YE X C, et al. Result comparisons on double Mach reflection flow between numerical calculation and quantitative measurement using optical interferemetries[J]. Aerodynamic Experiment and Measurement & Control, 1993, 7(1):22-31(in Chinese). [14] 易仕和, 陈植, 朱杨柱, 等. (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015, 36(1):98-119. YI S H, CHEN Z, ZHU Y Z, et al. Progress on experimental technique and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):98-119(in Chinese). [15] 姜宗林, 罗长童, 胡宗民, 等. 高超声速风洞实验数据的多维空间相关理论与关联方法[J]. 中国科学:物理学力学天文学, 2015, 42(12):1-12. JIANG Z L, LUO C T, HU Z M, et al. Multi-dimensional interrelation theory for hypersonic wind-tunnel experimental data and its correlation algorithm[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 42(12):1-12(in Chinese). [16] WANG C P, XUE L S, TIAN X. Experimental characteristics of oblique shock train upstream propagation[J]. Chinese Journal of Aeronautics, 2017, 30(2):663-676. [17] 俞鸿儒. 空心活塞运动产生的激波[J]. 气体物理, 2016, 1(1):1-4 YU H R. Shock wave generated by hollow piston movement[J]. Physics of Gases, 2016, 1(1):1-4(in Chinese). [18] WU Z N, XU Y Z, WANG W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3):503-513. [19] 周恒, 袁湘江. 关于NND格式的两点注记[J]. 空气动力学学报, 2000, 18(1):52-54. ZHOU H, YUAN X J. Notes on the NND scheme[J]. Acta Aerodynamica Sinica, 2000, 18(1):52-54(in Chinese). [20] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese). [21] 张涵信. 无波动、无自由参数、耗散的隐式差分格式[J]. 应用数学和力学, 1991, 12(1):97-100. ZHANG H X. Implicit non-oscillatory containing no free parameters and dissipative (INND) scheme[J]. Applied Mathematics and Mechanics, 1991, 12(1):97-100(in Chinese). [22] 邓小刚. 高阶精度耗散加权紧致非线性格式[J]. 中国科学(A辑), 2001, 31(12):1104-1117. DENG X G. High order precision dissipated weighted compact nonlinear scheme[J]. Science in China (Series A), 2001, 31(12):1104-1117(in Chinese). [23] 邓小刚, 刘昕, 毛枚良, 等. 高精度加权紧致非线性格式的研究进展[J]. 力学进展, 2007, 37(3):417-427. DENG X G, LIU X, MAO M L, et al. Advance in high order accurate weighted compact nonlinear schemes[J]. Advances in Mechanics, 2007, 37(3):417-427(in Chinese). [24] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6):716-739. WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6):716-739(in Chinese). [25] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆内收缩进气道非设计点工作特性[J]. 航空学报, 2016, 37(11):3263-3272. LI Y Z, ZHANG K Y, SUN D. Off-design performance characteristics of inward turning inlet with rectangular-to-circular shape transition with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3263-3272(in Chinese). [26] 乐嘉陵, 胡欲立, 刘陵. 双模态超燃冲压发动机研究进展[J]. 流体力学实验与测量, 2000, 14(1):1-12. LE J L, HU Y L, LIU L. Investigation of possibilities in developing dual-mode scramjets[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(1):1-12(in Chinese). [27] HUANG W, WANG Z G, POURKASHANIAN M, et al. Numerical investigation on the shock wave transition in a three-dimensional scramjet isolator[J]. Acta Astronautica, 2011, 68:1669-1675. [28] 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑:技术科学), 2009, 39(11):1828-1835. WANG F M, DING H H, LEI M F. Aerodynamic characteristics research on wide-speed range waverider configuration[J]. Science in China (Series E:Technological Sciences), 2009, 39(11):1828-1835(in Chinese). [29] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese). [30] 刘建军, 胡红桥, 韩德胜, 等. 地基观测的夜侧极光对行星际激波的响应[J]. 地球物理学报, 2013, 56(6):1785-1796. LIU J J, HU H Q, HAN D S, et al. Response of nightside aurora to interplanetary shock from ground optical observation[J]. Chinese Journal of Geophysics, 2013, 56(6):1785-1796(in Chinese). [31] 陈恕行. 弱斜激波的稳定性[J]. 中国科学(A辑), 2002, 32(5):451-457. CHEN S X. Stability of weak oblique shock waves[J]. Science in China (Series A), 2002, 32(5):451-457(in Chinese). [32] 张涵信. 关于CFD高精度保真的数值模拟研究[J]. 空气动力学学报, 2016, 34(1):1-4. ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2016, 34(1):1-4(in Chinese). [33] SHAPIRO A H. The dynamics and thermodynamics of compressible fluid flow (Volume 1)[M]. New York:The Ronald Press Company, 1953:532-539. |