[1] BOYD I D. Modeling of associative ionization reactions in hypersonic rarefied flows[J]. Physics of Fluids, 2007, 19(9):3-14. [2] OZAWA T, LEVIN D A, NOMPELIS I, et al. Particle and continuum method comparison of a high altitude Mach number reentry flow[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2):225-240. [3] LOFTHOUSE A J, SCALABRINY L C, BOYD I D. Hypersonic aerothermodynamics analysis across non-equilibrium regimes using continuum and particle methods:AIAA-2007-3903[R]. Reston, VA:AIAA, 2007. [4] WEN C Y, MASSIMI H S, CHEN Y S, et al. Numerical simulations of non-equilibrium flows over rounded models at reentry speeds:AIAA-2012-5906[R]. Reston, VA:AIAA, 2012. [5] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京:北京航空航天大学, 1996:3-30. DONG W Z. Numerical simulation and analysis of thermo-chemical non-equilibrium effects at hypersonic flows[D]. Beijing:Beihang University, 1996:3-30(in Chinese). [6] 董维中. 气体模型对高超声速再入钝体气动参数计算影响的研究[J]. 空气动力学学报, 2001, 19(2):197-202. DONG W Z. Thermal and chemical model effect on the calculation of aerodynamic parameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2):197-202(in Chinese). [7] 董维中, 高铁锁, 丁明松, 等. 高超声速非平衡流场多个振动温度模型的数值研究[J]. 空气动力学学报, 2007, 25(1):1-6. DONG W Z, GAO T S, DING M S, et al. Numerical studies of the multiple vibrational temperature model in hypersonic non-equilibrium flows[J]. Acta Aerodynamica Sinica, 2007, 25(1):1-6(in Chinese). [8] 乐嘉陵. 再入物理[M]. 北京:国防工业出版社, 2005:9-21. LE J L. Reentry physics[M]. Beijing:National Defence Industry Press, 2005:9-21(in Chinese). [9] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory:AIAA-2000-2366[R]. Reston, VA:AIAA, 2000. [10] KUROTAKI T, MATSUZAKI T. CFD evaluation of catalytic model on SiO2-based TPS in arc-heated wind tunnel:AIAA-2003-0155[R]. Reston, VA:AIAA, 2003. [11] JOCHEN M, MATTHEW M. Finite-rate surface chemistry model, I:Formulation and reaction system examples:AIAA-2011-3783[R]. Reston, VA:AIAA, 2011. [12] STEWART D A. Surface catalysis and characterization of proposed candidate TPS for access-to-space vehicles:NASA TM-112206[R]. Washington, D.C.:NASA, 1997. [13] STEWART D A. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE:AIAA-1991-1373[R]. Reston, VA:AIAA, 1991. [14] ANTONIO V. Effect of finite rate chemical models on the aerothermodynamics of reentry capsules:AIAA-2008-2668[R]. Reston, VA:AIAA, 2008. [15] INGER G R. Nonequilibrium hypersonic stagnation flow at low Reynolds numbers:TDR-269(4230-20)-10[R]. EI Segundo, CA:Aerospace Corporation, 1964. [16] GOULARD R J. On catalytic recombination rates in hypersonic stagnation on heat transfer[J]. Jet Propulsion, 1958, 28(11):737-745. [17] STEWART D A, RAKICH J V, LANFRANCO M J. Catalytic surface experiment on the space shuttle:AIAA-1981-1143[R]. Reston, VA:AIAA, 1981. [18] SCOTT C D. Wall catalytic recombination and boundary conditions in non-equilibrium hypersonic flows-With applications:94A10765[R]. Washington, D.C.:NASA, 1992. [19] SUBRAHMANYAM P. Development of a parallel CFD solver SPARTA for aerothermodynamic analysis:AIAA-2007-2976[R]. Reston, VA:AIAA, 2007. [20] EDQUIST K T. Afterbody heating predictions for a Mars science laboratory entry vehicle:AIAA-2005-4817[R]. Reston, VA:AIAA, 2005. [21] 董维中, 乐嘉陵, 刘伟雄. 驻点壁面催化速率常数确定的研究[J]. 流体力学实验与测量, 2000, 14(3):1-6. DONG W Z, LE J L, LIU W X. The determination of catalytic rate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6(in Chinese). [22] 曾明, 冯海涛, 瞿章华. 不同热化学模型对表面传热影响的数值分析[J]. 国防科技大学学报, 2001, 23(5):27-31. ZENG M, FENG H T, QU Z H. Numerical analysis of the effects for different thermo-chemical models on heat transfer[J]. Journal of National University of Defense Technology, 2001, 23(5):27-31(in Chinese). [23] 柳军. 热化学非平衡流及其辐射现象的实验和数值计算研究[D]. 长沙:国防科学技术大学, 2004:3-25. LIU J. Experimental and numerical research on thermo-chemical nonequilibrium flow with radiation phenomenon[D]. Changsha:National University of Defense Technology, 2004:3-25(in Chinese). [24] 高冰, 杭建, 林贞彬, 等. 高温真实气体效应中催化效应对气动热影响的实验探索[J]. 流体力学实验与测量, 2004, 18(2):55-58. GAO B, HANG J, LIN Z B, et al. The experiment exploration of catalyst effects on aerodynamic heat in real gas effects[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(2):55-58(in Chinese). [25] 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨:哈尔滨工业大学, 2014:2-50. JIN H. Surface catalyticity properties testing and characterization methods of thermal protection materilas[D]. Harbin:Harbin Institute of Technology, 2014:2-50(in Chinese). [26] 苗文博, 程晓丽, 艾邦成. 来流条件对热流组分扩散项影响效应分析[J]. 空气动力学学报, 2011, 29(4):476-480. MIAO W B, CHENG X L, AI B C. Flow configuration effects on mass diffusion part of heat-flux in thermal-chemical flows[J]. Acta Aerodynamica Sinica, 2011, 29(4):476-480(in Chinese). [27] 苗文博, 程晓丽, 艾邦成. 高超声速流动壁面催化复合气动加热特性[J]. 宇航学报, 2013, 34(3):442-446. MIAO W B, CHENG X L, AI B C. Surface catalysis recombination aero-heating characteristics of hypersonic flow[J]. Journal of Astronautics, 2013, 34(3):442-446(in Chinese). [28] 苗文博, 罗晓光, 程晓丽, 等. 壁面催化对高超声速飞行器气动特性影响[J]. 空气动力学学报, 2014, 32(2):236-239. MIAO W B, LUO X G, CHENG X L, et al. Surface recombination effects on aerodynamic loads of hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2014, 32(2):236-239(in Chinese). [29] 杨肖峰, 唐伟. 火星环境高超声速催化加热特性[J]. 宇航学报, 2017, 38(2):205-211. YANG X F, TANG W. Hypersonic catalytic aeroheating characteristics for mars entry process[J]. Journal of Astronautics, 2017, 38(2):205-211(in Chinese). [30] 董维中, 丁明松, 高铁锁, 等. 热化学非平衡模型和表面温度对气动热计算影响分析[J]. 空气动力学学报, 2013, 31(6):692-698. DONG W Z, DING M S, GAO T S, et al. The influence of thermo-chemical non-equilibrium model and surface temperature on heat transfer rate[J]. Acta Aerodynamica Sinica, 2013, 31(6):692-698(in Chinese). [31] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1):311-324. DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324(in Chinese). [32] PARK C. Review of chemical-kinetic problems of future NASA missions, I:Earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3):385-398. [33] GOKCEN T. Effects of flow field non-equilibrium on convective heat transfer to a blunt body:AIAA-1996-0325[R]. Reston, VA:AIAA, 1996. [34] MUYLAERT J. Standard model testing in the European high facility F4 and extrapolation to flight:AIAA-1992-3905[R]. Reston, VA:AIAA, 1992. |