[1] STYLE R W, DUFRESNE E R. Static wetting on deformable substrates, from liquids to soft solids[J]. Soft Matter, 2012, 8(27):7177-7184.
[2] WATSON G S, GELLENDER M, WATSON J A. Self-propulsion of dew drops on lotus leaves:a potential mechanism for self cleaning[J]. Biofouling, 2014, 30(4):427-434.
[3] LIU K, YAO X, JIANG L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8):3240-3255.
[4] YAN Y Y, GAO N, BARTHLOTT W. Mimicking natural superhydrophobic surfaces and grasping the wetting process:A review on recent progress in preparing superhydrophobic surfaces[J]. Advances in Colloid and Interface Science, 2011, 169(2):80-105.
[5] GUO Z, ZHOU F, HAO J, et al. Stable biomimetic super-hydrophobic engineering materials[J]. Journal of the American Chemical Society, 2005, 127(45):15670-15671.
[6] TSAI P, PACHECO S, PIRAT C, et al. Drop impact upon micro-and nanostructured superhydrophobic surfaces[J]. Langmuir, 2009, 25(20):12293-12298.
[7] TRAN T, STAAT H J J, SUSARREY-ARCE A, et al. Droplet impact on superheated micro-structured surfaces[J]. Soft Matter, 2013, 9(12):3272-3282.
[8] LIU Y, WHYMAN G, BORMASHENKO E, et al. Controlling drop bouncing using surfaces with gradient features[J]. Applied Physics Letters, 2015, 107(5):051604.
[9] LIU Y, MOEVIUS L, XU X, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7):515-519.
[10] AUSSILLOUS P, QUÉRÉ D. Liquid marbles[J]. Nature, 2001, 411(6840):924-927.
[11] SHEN Y, TAO J, TAO H, et al. Superhydrophobic Ti6Al4V surfaces with regular array patterns for antiicing applications[J]. RSC Advances, 2015, 5(41):32813-32818.
[12] HU C, LIU S, LI B, et al. Micro-/nanometer rough structure of a superhydrophobic biodegradable coating by electrospraying for initial anti-bioadhesion[J]. Advanced Healthcare Materials, 2013, 2(10):1314-1321.
[13] BLAKE J, THOMPSON D, RAPS D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7):1725-1739.
[14] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2):335-354.
[15] LIU M, ZHENG Y, ZHAI J, et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Accounts of Chemical Research, 2009, 43(3):368-377.
[16] BORMASHENKO E, STAROV V. Impact of surface forces on wetting of hierarchical surfaces and contact angle hysteresis[J]. Colloid and Polymer Science, 2013, 291(2):343-346.
[17] SPORI D M, DROBEK T, ZURCHER S, et al. Cassie-state wetting investigated by means of a hole-to-pillar density gradient[J]. Langmuir, 2010, 26(12):9465-9473.
[18] FENG L, LI S, LI H, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie, 2002, 114(7):1269-1271.
[19] RIOBOO R, VOUE M, VAILLANT A, et al. Droplet impact on porous superhydrophobic polymer surface[J]. Langmuir, 2008, 24(24):14074-14077.
[20] 宋云超, 宁智, 孙春华, 等. 液滴撞击壁面铺展运动的数值模拟[J]. 燃烧科学与技术, 2013, 19(6):549-556. SONG Y C, NING Z, SUN C H, et al. Numerical simulation of spreading of a droplet impacting on a wall[J]. Journal of Combustion Science and Technology, 2013, 19(6):549-556(in Chinese).
[21] 胡海豹, 陈立斌, 黄苏和,等. 水滴撞击黄铜基超疏水表面的破碎行为研究[J]. 摩擦学学报, 2013, 33(5):449-455. HU H B, CHEN L B, HUANG S H, et al. Breakup phenomenon of droplets impacting on a superhydrophobic brass surface[J]. Tribology, 2013, 33(5):449-455(in Chinese).
[22] LEE D J, KIM HM, SONG Y S, et al. Water droplet bouncing and superhydrophobicity induced by multiscale hierarchical nanostructures[J]. ACS Nano, 2012, 6(9):7656-7664.
[23] WANG X, PENG X, MIN J, et al. Hysteresis of contact angle at liquid-solid interface[J]. Journal of Basic Science and Engineering, 2001, 9(4):343-353.
[24] PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3):650-659. |