[1] 孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3):804-818. SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical arifoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):804-818(in Chinese).
[2] 路波, 吕彬彬, 罗建国, 等. 跨声速风洞全模颤振试验技术[J]. 航空学报, 2015, 36(4):1086-1092. LU B, LYU B B, LUO J G, et al. Wind tunnel technique for transonic full-model flutter test[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092(in Chinese).
[3] SOETERBOEK R A M, PELS A F, VERBRUGGEN H B, et al. A predictive controller for the Mach number in a transonic wind tunnel[J]. IEEE Control Systems, 1991, 11(1):63-72.
[4] YAN Y, XI Z, ZHANG S. Numerical simulation and transonic wind-tunnel test for elastic thin-shell structure considering fluid-structure interaction[J]. Chinese Journal of Aeronautics, 2015, 28(1):141-151.
[5] LIU W, MA X, LI X, et al. High-precision pose measurement method in wind tunnels based on laser-aided vision technology[J]. Chinese Journal of Aeronautics, 2015,28(4):1121-1130.
[6] GREEN J, QUEST J. A short history of the European transonic wind tunnel ETW[J]. Progress in Aerospace Sciences, 2011, 47(5):319-368.
[7] 钱卫, 张桂江, 刘钟坤.飞机全动平尾颤振特性风洞试验[J]. 航空学报, 2015, 36(4):1093-1102. QIAN W, ZHANG G J, LIU Z K. Flutter characteristics for aircraft all-movable horizontal tail through wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1093-1102(in Chinese).
[8] 张贵军. 风洞过程建模与控制问题的研究[D]. 沈阳:东北大学, 1998. ZHANG G J. Research on model and control of wind tunnel process[D]. Shenyang:Northeastern University, 1998(in Chinese).
[9] LEONTARITIS J, BILLINGS S A. Input-output parametric models for nonlinear systems, Part I:Deterministic nonlinear systems; Part II:Stochastic nonlinear system[J]. International Journal of Control, 1985, 41(1):303-344.
[10] DANDOIS J, PAMART P Y. NARX modeling and extremum-seeking control of a separation[J]. Journal of Aerospace Lab, 2013(6):1-12.
[11] BOUBEZOUL A, PARIS S. Application of global optimization methods to model and feature selection[J]. Pattern Recognition, 2012, 45(10):3676-3686.
[12] CEPERIC V, GIELEN G, BARIC A. Recurrent sparse support vector regression machines trained by active learning in the time-domain[J]. Expert Systems with Applications, 2012, 39(12):10933-10942.
[13] SU Y, GAO X, LI X, et al. Multivariate multilinear regression[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 2012, 42(6):1560-1573.
[14] SPEYBRIECK N. Classification and regression trees[J], Hints & Kinks International Journal of Public Health, 2012, 57(1):243-246.
[15] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
[16] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140.
[17] NORGAARD M. Neural network based system identification toolbox, Version 2, For use with MATLAB, Department of Automation, Department of Mathematical Modelling, Technical University of Denmark[EB/OL]. (2000-01-23)[2015-06-17]. http://www.iau.dtu.dk/research/control/nnsysid.html.
[18] 郭昌辉, 刘贵全, 张磊. 基于回归树与K-最近邻交互模型的存储设备性能预测[J]. 南京大学学报:自然科学版, 2012, 48(2):123-132. GUO C H, LIU G Q, ZHANG L. An interactive model based on regression tree and K-nearest neighbor for storage device performance prediction[J]. Journal of Nanjing University:Natural Sciences Edition, 2012, 48(2):123-132(in Chinese).
[19] 陈湘芳, 陈明, 冯国富, 等. 多变量时序回归树的黄瓜产量预测模型[J]. 计算机工程与设计, 2012, 33(1):407-411. CHEN X F, CHEN M, FENG G F, et al. Yield prediction model of cucumber based on multivariate time series regression tree[J]. Computer Engineering and Design 2012, 33(1):407-411(in Chinese).
[20] PERRONE M P, COOPER L N. When networks disagree:Ensemble methods for hybrid neural networks[M]. In:MAMMONE R J, editor. Artificial neural networks for speech and vision. London:Chapman & Hall, 2001:126-142. |