[1] ANTONY J. Efficient aerodynamic shape optimization:AIAA-2004-4369[R]. Reston:AIAA, 2004.
[2] 梁煜, 程小全, 郦正能, 等. 基于代理模型的气动外形平面参数多目标匹配设计[J]. 航空学报, 2010, 31(6):1141-1148. LIANG Y, CHENG X Q, LI Z N, et al. Multi-object aerodynamic configuration parameter design using GA and Kriging[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1141-1148(in Chinese).
[3] LIANG Y, CHENG X Q, LI Z N, et al. Multi-objective robust airfoil optimization based on NURBS representation[J]. Science China:Technological Sciences, 2010, 53(10):2708-2717.
[4] LIANG Y, CHENG X Q, LI Z N, et al. Robust multi-objective wing design optimization via approximation model of CFD[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(2):286-300.
[5] HAGER J O, EYI S, LEE K D. Multi point design of transonic airfoils using optimization:AIAA-1992-4225[R].Reston:AIAA, 1992.
[6] BEATTY T D, BROOKS W B, ROBINSON L D. Investigation of a variable camber wing design:AD A045951[R]. Texas:VOUGHT CORP, 1977.
[7] RENKEN J H. Mission adaptive wing camber control systems for transport aircraft:AIAA-1985-5006[R]. Reston:AIAA, 1985.
[8] Preliminary Design Department. Assessment of variable camber for application to transport aircraft:NASA-CR-158930[R]. Washington, D.C.:NASA, 1980.
[9] BOLONKIN A, GILUARD G B. Estimated benefits of variable-geometry wing camber controal for transport aircraft:NASA/TM-1999-206586[R]. Washington, D.C.:NASA, 1999.
[10] GILYARD G B, GEORGIE J, BARNICKI J S. Flight test of an adaptive configuration optimization system for transport aircraft:NASA/TM-1999-206569[R]. Washington, D.C.:NASA, 1999.
[11] STRUBER H. The aerodynamic design of the A350 XWB-900 high lift system[C]//29th Congress of the International Council of the Aeronautical Sciences. St. Petersburg:ICAS, 2014:7-9.
[12] URNES J, NGUYEN N, IPPOLITO C, et al. A mission-adaptive variable camber flap control system to optimize high lift and cruise lift to drag ratios of future N+3 transport aircraft:AIAA-2013-0214[R]. Reston:AIAA,2013.
[13] KAUL U K, NGUYEN N T. Drag optimization study of variable camber continuous trailing edge flap(VCCTEF) using OVERFLOW:AIAA-2014-2444[R]. Reston:AIAA,2014.
[14] IPPOLITO C, NGUYEN N, TOTAH J, et al. Initial assessment of a variable-camber continuous trailing-edge flap system on a rigid wing for drag reduction in subsonic cruise:AIAA-2013-5143[R]. Reston:AIAA, 2013.
[15] RODRIGUEZ D L, AFTOSMIS M J, NEMEC M, et al. Optimized off-design performance of flexible wings with continuous trailing-edge flaps:AIAA-2015-1409[R]. Reston:AIAA, 2015.
[16] 陈秀, 葛文杰, 张永红, 等. 基于遗传算法的柔性机构形状变化综合优化研究[J]. 航空学报, 2007, 28(5):1230-1235. CHEN X, GE W J, ZHANG Y H, et al. Investigation on synthesis optimization for shape morphing compliant mechanisms using GA[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1230-1235(in Chinese).
[17] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1):46-53. CHEN Q, BAI P, YING W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese).
[18] 熊俊涛, 乔志德, 韩忠华. 基于响应面法的跨声速机翼气动优化设计[J]. 航空学报, 2006, 27(3):399-402. XIANG J T, QIAO Z D, HAN Z H. Optimum aerodynamic design of transonic wing based on response surface methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):399-402(in Chinese).
[19] 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究[J]. 计算力学学报, 2005, 22(5):608-612. MU X F, YAO W X, YU X Q, et al. A survey of surrogate models used in MDO[J]. Chinese Journal of Computational Mechanics, 2005, 22(5):608-612(in Chinese).
[20] 王振国, 陈小前, 罗文彩, 等.飞行器多学科设计优化理论与应用研究[M]. 北京:国防工业出版社, 2006:110-158. WANG Z G, CHEN X Q, LUO W C, et al. Research on the theory and application of multidisciplinary design optimization of flight vehicles[M]. Beijing:National Defense Industry Press, 2006:110-158(in Chinese). |