[1] Fishbach L H, Stitt L E, Stone J R, et al. NASA research in supersonic propulsion-a decade of progress, AIAA-1982-1048[R]. Reston: AIAA, 1982.
[2] Rallabhandi S K, Mavris D N. Simultaneous airframe and propulsion cycle optimization for supersonic aircraft design, AIAA-2008-0143[R]. Reston: AIAA, 2008.
[3] French M W, Allen G L. NASA VCE test bed engine aerodynamic performance characteristics and results, AIAA-1981-1594[R]. Reston: AIAA, 1981.
[4] Vdoviak J W, Knott P R, Ebacker J A. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannualr plug nozzle, NASA/CR-159869[R].Washington,D.C.: NASA, 1981.
[5] Vdoviak J W, Ebacker J A. VCE test bed engine for supersonic cruise research, NASA Conference Publication 2108[R]. Washington, D.C.: NASA Langley Research Center, 1979: 347-356.
[6] Morris S J, Coen P G, Geiselhart K A. Performance potential of an advanced technology Mach 3 turbojet engine installed on a conceptual high-speed civil transport, NASA Technical Memorandum 4144[R]. Washington, D.C.: NASA, 1989.
[7] Krebs J N, Allan R D. Supersonic propulsion—1970 to 1977, AIAA-1977-0832[R]. Reston: AIAA, 1977.
[8] Martin S. Research on TBCC propulsion for a Ma 4.5 supersonic cruise airliner, AIAA-2006-7976[R]. Reston: AIAA, 2006.
[9] Bartolotta P A, McNelis N B. High speed turbines: development of a turbine accelerator (RTA) for space access, AIAA-2003-6943[R]. Reston: AIAA, 2003.
[10] Koff B L, Koff S G. Engine design and challenges for the high Mach transport, AIAA-2007-5344[R]. Reston: AIAA, 2007.
[11] Wang H D. Investigation of performance model and performance analysis for double-bypass variable cycle engine[D]. Beijing: Beihang University, 1996 (in Chinese). 王洪东. 双外涵变循环发动机性能模拟研究及性能分析[D]. 北京: 北京航空航天大学, 1996.
[12] Liu Z W, Wang Z X, Huang H C, et al. Numerical simulation on performance of variable cycle engines[J]. Journal of Aerospace Power, 2010, 25(6): 1310-1315 (in Chinese). 刘增文, 王占学, 黄红超, 等. 变循环发动机性能数值模拟[J]. 航空动力学报, 2010, 25(6): 1310-1315.
[13] Gou X Z, Zhou W X, Huang J Q. Component-level modeling technology for variable cycle engine[J]. Journal of Aerospace Power, 2013, 28(1): 105-111 (in Chinese). 苟学中, 周文详, 黄金泉. 变循环发动机部件级建模技术研究[J]. 航空动力学报, 2013, 28(1): 105-111.
[14] Wang Y, Li Q H, Huang X H. Research of variable cycle engine modeling techniques[J]. Journal of Aerospace Power, 2013, 28(4): 954-960 (in Chinese). 王元, 李秋红, 黄向华. 变循环发动机建模技术[J]. 航空动力学报, 2013, 28(4): 954-960.
[15] Zhao M J. Hardware-in-loop simulation test-bed for variable cycle engine[D]. Beijing: North China University of Technology, 2008 (in Chinese). 赵敏静. 变循环发动机控制半物理仿真研究[D]. 北京: 北方工业大学, 2008.
[16] Zhang X, Liu B J. Analysis of aerodynamic design of core driven fan stage[J]. Journal of Aerospace Power, 2010, 25(2): 434-442 (in Chinese). 张鑫, 刘宝杰. 核心机驱动风扇级的气动设计特点分析[J]. 航空动力学报, 2010, 25(2): 434-442.
[17] Zhang X, Liu B J. Analysis of the core driven fan stage with compact aerodynamic configuration[J]. Journal of Propulsion Technology, 2011, 32(1): 47-53 (in Chinese). 张鑫, 刘宝杰. 紧凑布局核心机驱动风扇级设计参数影响分析[J]. 推进技术, 2011, 32(1): 47-53.
[18] Zhang X, Liu B J. Investigation of a methodology for the CDFS matching in the non-design operating mode[J]. Journal of Propulsion Technology, 2014, 35(3): 320-327 (in Chinese). 张鑫, 刘宝杰. 核心机驱动风扇级在非设计模式下的匹配方法研究[J]. 推进技术, 2014, 35(3): 320-327.
[19] Zhang X. The aerodynamic design of the core drive fan stage and the matching with the downstream components[D]. Beijing: Beihang University, 2011 (in Chinese). 张鑫. 核心机驱动风扇级的气动设计及其与下游部件的匹配分析[D]. 北京: 北京航空航天大学, 2011.
[20] Gallimore S J, Bolger J J, Cumpsty N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading—part I: University research and methods development, ASME Paper, GT-2003-30328[R]. New York: ASME, 2003. |