1 |
曹秋生, 张会军. 高空长航时无人机的发展特点及技术难点探讨[J]. 中国电子科学研究院学报, 2008, 3(1): 8-13.
|
|
CAO Q S, ZHANG H J. Characteristics of HALE UAVs in development and discussion of existing technical difficulties[J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(1): 8-13 (in Chinese).
|
2 |
CIRIGLIANO D, FRISCH A M, LIU F, et al. Diesel, spark-ignition, and turboprop engines for long-duration unmanned air flights[J]. Journal of Propulsion and Power, 2018, 34(4): 878-892.
|
3 |
向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77.
|
|
XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese).
|
4 |
于广民, 王奉明, 卢娟. 高空长航时无人机用发动机推力需求及技术特点分析[J]. 燃气涡轮试验与研究, 2021, 34(6): 41-46, 55.
|
|
YU G M, WANG F M, LU J. Analysis of engine requirements and technical characteristics for high altitude long endurance UAV[J]. Gas Turbine Experiment and Research, 2021, 34(6): 41-46, 55 (in Chinese).
|
5 |
JAIN N, LE MOINE A, CHAUSSONNET G, et al. A critical review of physical models in high temperature multiphase fluid dynamics: Turbulent transport and particle-wall interactions[J]. Applied Mechanics Reviews, 2021, 73(4): 040801.
|
6 |
丁金亮. 民用飞机燃料电池技术应用现状及未来展望[J]. 军民两用技术与产品, 2019(7): 59-62.
|
|
DING J L. Application status and future prospect of civil aircraft fuel cell technology[J]. Dual Use Technologies & Products, 2019(7): 59-62 (in Chinese).
|
7 |
STROMAN R O, SCHUETTE M W, SWIDER-LYONS K, et al. Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11279-11290.
|
8 |
BAO C, WANG Y, FENG D L, et al. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system[J]. Progress in Energy and Combustion Science, 2018, 66: 83-140.
|
9 |
GAMBLE D E. World record duration flight of group 2 unmanned aircraft with VTOL and hybrid propulsion system using solid oxide fuel cell[C]∥Proceedings of the AIAA Scitech 2023 Forum. Reston: AIAA, 2023.
|
10 |
胡焦英, 毛军逵, 贺振宗. 基于航空煤油重整的SOFC-GT混合动力系统性能[J]. 航空动力学报, 2020, 35(2): 325-336.
|
|
HU J Y, MAO J K, HE Z Z. Performance of the SOFC-GT hybrid system based on aviation kerosene reforming[J]. Journal of Aerospace Power, 2020, 35(2): 325-336 (in Chinese).
|
11 |
雷涛, 闵志豪, 付红杰, 等. 燃料电池无人机混合电源动态平衡能量管理策略[J]. 航空学报, 2020, 41(12): 287-301.
|
|
LEI T, MIN Z H, FU H J, et al. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 287-301 (in Chinese).
|
12 |
ACHENBACH E, RIENSCHE E. Methane/steam reforming kinetics for solid oxide fuel cells[J]. Journal of Power Sources, 1994, 52(2): 283-288.
|
13 |
CAMPANARI S, IORA P. Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[J]. Journal of Power Sources, 2004, 132(1-2): 113-126.
|
14 |
陈宏芳, 杜建华. 高等工程热力学[M]. 北京: 清华大学出版社, 2003.
|
|
CHEN H F, DU J H. Advanced engineering thermodynamics[M]. Beijing: Tsinghua University Press, 2003 (in Chinese).
|
15 |
AGUIAR P, ADJIMAN C S, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance[J]. Journal of Power Sources, 2004, 138(1-2): 120-136.
|
16 |
NAVASA M, GRAVES C, CHATZICHRISTODOULOU C, et al. A three dimensional multiphysics model of a solid oxide electrochemical cell: A tool for understanding degradation[J]. International Journal of Hydrogen Energy, 2018, 43(27): 11913-11931.
|
17 |
BAGUL P, RANA Z A, JENKINS K W, et al. Computational engineering analysis of external geometrical modifications on MQ-1 unmanned combat aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1154-1165.
|
18 |
MANSOURI H, OMMI F. Performance prediction of aircraft gasoline turbocharged engine at high-altitudes[J]. Applied Thermal Engineering, 2019, 156: 587-596.
|
19 |
CAVCAR M. Bréguet range equation?[J]. Journal of Aircraft, 2006, 43(5): 1542-1544.
|
20 |
JI Z X, QIN J, CHENG K L, et al. A comprehensive evaluation of ducted fan hybrid engines integrated with fuel cells for sustainable aviation[J]. Renewable and Sustainable Energy Reviews, 2023, 185: 113567.
|
21 |
COLLINS J M, MCLARTY D. All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids[J]. Applied Energy, 2020, 265: 114787.
|
22 |
GESELL H, WOLTERS F, PLOHR M. System analysis of turbo-electric and hybrid-electric propulsion systems on a regional aircraft[J]. The Aeronautical Journal, 2019, 123(1268): 1602-1617.
|
23 |
JI Z X, ROKNI M M, QIN J, et al. Energy and configuration management strategy for battery/fuel cell/jet engine hybrid propulsion and power systems on aircraft[J]. Energy Conversion and Management, 2020, 225: 113393.
|
24 |
HASHIMOTO S, HIROTA T, SUZUKI K, et al. Material development strategy of lightweight solid oxide fuel cells for airplane system electrification[J]. ECS Transactions, 2019, 91(1): 311-318.
|
25 |
NASA. NASA high power density solid oxide fuel cell[R]. Washington, D.C.: NASA, 2023.
|
26 |
HILDING T. WSU researchers advance fuel cell technology[EB/OL]. (2020-06-08)[2023-07-17]. .
|
27 |
WATERS D F. Modeling of gas turbine-solid oxide fuel cell systems for combined propulsion and power on aircraft[D]. College Park: University of Maryland, 2015.
|