[1] Rumsey C L, Ying S X. Prediction of high lift: review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38: 145-180.
[2] Zhu Z Q, Chen Y C, Wu Z C, et al. Numerical simulation of high lift system configuration [J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 257-262(in Chinese). 朱自强, 陈迎春, 吴宗成, 等. 高升力系统外形的数值模拟计算[J]. 航空学报, 2005, 26(3): 257-262.
[3] Vassberg J C, Tinoco E N, Mani M. Comparison of NTF experimental data with CFD predictions from the third AIAA-CFD drag prediction workshop, AIAA-2008-6918[R]. Reston: AIAA, 2008.
[4] Vassberg J C, Tinoco E N, Mani M, et al. Summary of the fourth AIAA CFD drag prediction workshop, AIAA-2010-4547[R]. Reston: AIAA, 2010.
[5] Rumsey C L, Long M, Stuever R A. Summary of the first AIAA CFD high lift prediction workshop (invited), AIAA-2011-0939[R]. Reston: AIAA, 2011.
[6] Visbal R M, Gaitonde D V. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes[J]. Journal Computational Physics, 2002, 181:155-185.
[7] Nonomura T, Iizuka N, Fujii K. Freestream and votex preservation properties of high-order WENO and WCNS on curvilinear grids[J]. Computers & Fluids, 2010, 39:197-214.
[8] Menter F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[9] Menter F R, Langtry R B. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[10] Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. Journal Computational Physics, 2000, 165: 24-44.
[11] Deng X G, Mao M L, Tu G H, et al. Geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal Computational Physics, 2011, 230: 1100-1115.
[12] Deng X G, Min R B, Mao M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal Computational Physics, 2013, 239: 90-111.
[13] Wang G X, Deng X G, Liu H Y, et al. Application of high-order scheme(WCNS) at high angles of incidence for delta wing[J]. Acta Aerodynamica Sinica, 2012, 30(1):28-33 (in Chinese). 王光学, 邓小刚, 刘化勇, 等. 高阶精度格式WCNS在三角翼大攻角模拟中的应用研究[J]. 空气动力学学报, 2012, 30(1): 28-33.
[14] Li S, Wang G X, Zhang Y L, et al. Numerical simulation of trapezoidal wing high lift configuration with WCNS-E-5 scheme[J]. Acta Aerodynamica Sinica, 2014, 32(4): 439-445 (in Chinese). 李松, 王光学, 张玉伦, 等. WCNS格式在梯形翼高升力构型模拟中的应用研究[J]. 空气动力学学报, 2014, 32(4):439-445.
[15] van den Berg B. Boundary layer measurements on a two-dimensional wing with flap, NLR TR 79009 U[R]. Amsterdam: NLR, 1979.
[16] Barche J, Binjon T W, Winter K G, et al. Experimental database for computer program assessment-report of the fluid dynamics panel working group 04, AGARD-AR-138[R]. London: Technical Editing and Reproduction Ltd, 1979.
[17] Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801(in Chinese). 孟德虹, 张玉伦, 王光学, 等.γ-Reθ转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801. |