Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (22): 130275.doi: 10.7527/S1000-6893.2024.30275
• Fluid Mechanics and Flight Mechanics • Previous Articles
Xuechen XI1,2, Shuzhen NIU2, Pengfei YANG3, Wenqiang DU2, Guosheng HE2(), Honghui TENG2
Received:
2024-02-01
Revised:
2024-02-21
Accepted:
2024-03-19
Online:
2024-04-19
Published:
2024-04-03
Contact:
Guosheng HE
E-mail:15904913089@163.com
Supported by:
CLC Number:
Xuechen XI, Shuzhen NIU, Pengfei YANG, Wenqiang DU, Guosheng HE, Honghui TENG. Dynamic response characteristics of wave systems to wedge control in hydrogen-fueled oblique detonation engines[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 130275.
1 | PRUSSI M, LEE U, WANG M, et al. CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111398. |
2 | LIAO W J, FAN Y, WANG C N, et al. Emissions from intercity aviation: An international comparison[J]. Transportation Research Part D: Transport and Environment, 2021, 95: 102818. |
3 | CONTRERAS A. Hydrogen as aviation fuel: A comparison with hydrocarbon fuels[J]. International Journal of Hydrogen Energy, 1997, 22(10-11): 1053-1060. |
4 | PETRESCU R V V, MACHÍN A, FONTÁNEZ K, et al. Hydrogen for aircraft power and propulsion[J]. International Journal of Hydrogen Energy, 2020, 45(41): 20740-20764. |
5 | DONG G, FAN B C. Chemistry acceleration modeling of detonation based on the dynamical storage/deletion algorithm[J]. Combustion Science and Technology, 2009, 181(9): 1207-1216. |
6 | WOLAŃSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158. |
7 | ZHANG B, MEHRJOO N, NG H D, et al. On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution[J]. Combustion and Flame, 2014, 161(5): 1390-1397. |
8 | ZHANG Y N, YANG P F, TENG H H, et al. Transition between different initiation structures of wedge-induced oblique detonations[J]. AIAA Journal, 2018, 56(10): 4016-4023. |
9 | WANG K, YU X D, ZHANG Y K, et al. Studies on the valveless scheme to produce high-frequency detonations with different purge methods[J]. Proceedings of the Combustion Institute, 2023, 39(3): 2825-2834. |
10 | 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1): 245-260. |
WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 245-260 (in Chinese). | |
11 | SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
12 | FRY R, FRY R. The U.S. navy’s contributions to airbreathing missile propulsion technology: AIAA-2011-6942[R]. Reston: AIAA, 2011. |
13 | SEHRA A K, WHITLOW W. Propulsion and power for 21st century aviation[J]. Progress in Aerospace Sciences, 2004, 40(4-5): 199-235. |
14 | LI C P, KAILASANATH K, ORAN E S. Detonation structures behind oblique shocks[J]. Physics of Fluids, 1994, 6(4): 1600-1611. |
15 | VIGUIER C, GOURARA A, DESBORDES D. Three-dimensional structure of stabilization of oblique detonation wave in hypersonic flow[J]. Symposium (International) on Combustion, 1998, 27(2): 2207-2214. |
16 | ZHANG B, BAI C H. Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels - An overview[J]. Fuel, 2014, 117(PART A): 294-308. |
17 | TENG H H, NG H D, LI K, et al. Evolution of cellular structures on oblique detonation surfaces[J]. Combustion and Flame, 2015, 162(2): 470-477. |
18 | LU F K, FAN H Y, WILSON D R. Detonation waves induced by a confined wedge[J]. Aerospace Science and Technology, 2006, 10(8): 679-685. |
19 | FAN H Y, LU F K. Numerical modelling of oblique shock and detonation waves induced in a wedged channel[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(5): 687-703. |
20 | WANG K L, TENG H H, YANG P F, et al. Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner[J]. Journal of Fluid Mechanics, 2020, 903: A28. |
21 | 彭俊, 马嘉文, 杨鹏飞, 等. 斜爆轰波系在受限空间内的演变及其临界条件的数值研究[J]. 推进技术, 2021, 42(4): 738-744. |
PENG J, MA J W, YANG P F, et al. Numerical study on structural evolution and transitional criteria of oblique detonation waves in confined space[J]. Journal of Propulsion Technology, 2021, 42(4): 738-744 (in Chinese). | |
22 | 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波[J]. 物理学报, 2014, 63(20): 204701. |
LIU Y, ZHOU J, LIN Z Y. Ramp-induced oblique detonation wave with an incoming b oudary layer effect[J]. Acta Physica Sinica, 2014, 63(20): 204701 (in Chinese). | |
23 | 牛淑贞, 杨鹏飞, 杨旸, 等. 来流速度突变对斜爆轰反射波系驻定特性影响的数值研究[J]. 中国科学: 物理学、 力学、 天文学, 2023, 53(3): 164-176. |
NIU S Z, YANG P F, YANG Y, et al. Numerical study on the influence of inlet velocity discontinuity on the stationary characteristics of oblique detonation reflected wave system[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(3): 164-176 (in Chinese). | |
24 | WANG K L, ZHANG Z J, YANG P F, et al. Numerical study on reflection of an oblique detonation wave on an outward turning wall[J]. Physics of Fluids, 2020, 32(4): 046101. |
25 | TENG H H, TIAN C, ZHANG Y N, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Journal of Fluid Mechanics, 2021, 913: A1. |
26 | WILSON G J, MACCORMACK R W. Modeling supersonic combustion using a fully implicit numerical method[J]. AIAA Journal, 1992, 30(4): 1008-1015. |
27 | JACHIMOWSKI C J. Analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[J]. Washington, D.C.: NASA, 1988. |
28 | CHOI J Y, SHIN E J R, JEUNG I S. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2387-2396. |
29 | CHOI J Y, JEUNG I S, YOON Y. Computational fluid dynamics algorithms for unsteady shock-induced combustion, part 1: Validation[J]. AIAA Journal, 2000, 38(7): 1179-1187. |
30 | CHAPUIS M, FEDINA E, FUREBY C, et al. A computational study of the HyShotⅡ combustor performance[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2101-2109. |
31 | BENEK J, BUNING P, STEGER J. A 3-D chimera grid embedding technique: AIAA-1985-1523[R]. Reston: AIAA, 1985. |
32 | 陈作斌, 江雄, 周铸, 等. 计算流体技术及应用[J]. 中国科学:技术科学, 2008, 38(5): 657-670. |
CHEN Z B, JIANG X, ZHOU Z, et al. Computational fluid technology and its application[J]. Scientia Sinica Technologica, 2008, 38(5): 657-670 (in Chinese). | |
33 | PREWITT N C, BELK D M, SHYY W. Parallel computing of overset grids for aerodynamic problems with moving objects[J]. Progress in Aerospace Sciences, 2000, 36(2): 117-172. |
34 | GAO B, WU Z N. A study of the flow structure for Mach reflection in steady supersonic flow[J]. Journal of Fluid Mechanics, 2010, 656: 29-50. |
35 | WANG K L, YANG P F, TENG H H. Steadiness of wave complex induced by oblique detonation wave reflection before an expansion corner[J]. Aerospace Science and Technology, 2021, 112: 106592. |
36 | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
37 | ABISLEIMAN S, BIELAWSKI R, RAMAN V. High-fidelity simulation of oblique detonation waves: AIAA-2024-1656[R]. Reston: AIAA, 2024. |
38 | DESAI S, TAO Y J, SIVARAMAKRISHNAN R, et al. Effects of non-thermal termolecular reactions on wedge-induced oblique detonation waves[J]. Combustion and Flame, 2023, 257: 112681. |
[1] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[2] | Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811. |
[3] | Bin LI, Zenan ZHANG, Fei JIA, Jian SUN, Yanju LIU, Jinsong LENG. Research status and development trend of morphing wingtip technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 30042-030042. |
[4] | Dingchong LYU, Shoujun ZHAO, Si ZENG, Jian FU, Xintong HU, Huixiang LIU, Kefei MIAO, Yongling FU. Key technologies and challenges of high⁃performance servo⁃motor⁃pumps [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630225-630225. |
[5] | Xiongliang YAO, Bin ZHAO, Guihui MA. Research status and prospect of cross-media vehicle water exit [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 29598-029598. |
[6] | Yihui HAN, Jun HU, Yong YU, Jianqiao YU. Wind tunnel experimental verification of aerodynamic control force of cross⁃shaped flexible control surface [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 129280-129280. |
[7] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[8] | Yanfei ZUO, Yiliu WU, Jie WANG, Kun FENG, Zhinong JIANG. Influence of temperature-induced material property changes on dynamic characteristics of engine dual-rotor system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 226993-226993. |
[9] | Qixiang GAO, Dingwei ZHANG, Lijun YANG, Qingfei FU. Experiment on dynamic characteristics of swirl injector under back pressure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127130-127130. |
[10] | Wenlong BAO, He JIA, Xiaopeng XUE, Xuejiao HUANG, Shuyi GAO, Wei RONG, Qi WANG, Zhuangzhi WU. Influence of ‘windows’ structure on inflation process of ringsail parachute [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226936-226936. |
[11] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[12] | Fanmin MENG, Nuo MA, Wenchao MA, Junhui MENG, Wenguang LI. Wet modal analysis and tests for inflatable wing with swept air-beams [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 227098-227098. |
[13] | Limin GAO, Bo OUYANG, Heng JIANG, Ning GE, Ruiyu LI. Experimental study on cut-off frequency of fast response pressure sensitive paint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 127556-127556. |
[14] | FU Yang'aoxiao, DING Mingsong, LIU Qingzong, JIANG Tao, SHI Run, DONG Weizhong, GAO Tiesuo. Numerical study of hot jet interaction effect in divert control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125941-125941. |
[15] | ZHOU Wei, MA Peiyang, GUO Zheng, WANG Daoping, ZHOU Ruisun. Research of combined fixed-wing UAV based on wingtip chained [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 325946-325946. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341