Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (14): 29598-029598.doi: 10.7527/S1000-6893.2023.29598
• Reviews • Previous Articles
Xiongliang YAO1,2, Bin ZHAO1,2, Guihui MA1,2()
Received:
2023-09-18
Revised:
2023-10-13
Accepted:
2023-11-08
Online:
2023-11-17
Published:
2023-11-16
Contact:
Guihui MA
E-mail:maguihui@hrbeu.edu.cn
Supported by:
CLC Number:
Xiongliang YAO, Bin ZHAO, Guihui MA. Research status and prospect of cross-media vehicle water exit[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 29598-029598.
1 | STINEBRING D R, COOK R B, DZIELSKI J E, et al. High-speed supercavitating vehicles[C]∥Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2006. |
2 | CECCIO S L. Friction drag reduction of external flows with bubble and gas injection[J]. Annual Review of Fluid Mechanics, 2010, 42: 183-203. |
3 | 冷海军, 鲁传敬. 轴对称体的局部空泡流研究[J]. 上海交通大学学报, 2002, 36(3): 395-398. |
LENG H J, LU C J. Study on partially cavitating flow of an axisymmetric body[J]. Journal of Shanghai Jiao Tong University, 2002, 36(3): 395-398 (in Chinese). | |
4 | LIU T T, HUANG B, WANG G Y, et al. Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment[J]. Ocean Engineering, 2017, 129: 343-351. |
5 | WANG Z Y, HUANG B, WANG G Y, et al. Experimental and numerical investigation of ventilated cavitating flow with special emphasis on gas leakage behavior and re-entrant jet dynamics[J]. Ocean Engineering, 2015, 108: 191-201. |
6 | 段磊. 通气空泡多相流流动特性研究[D]. 北京: 北京理工大学, 2014. |
DUAN L. Study on characteristics of ventilated cavitating flows around an axisymmetric body[D]. Beijing: Beijing Institute of Technology, 2014 (in Chinese). | |
7 | 张忠宇. 水中航行体主动通气空泡流试验与数值方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
ZHANG Z Y. Experimental and numerical methods for active ventilated cavity flows of underwater vehicles[D]. Harbin: Harbin Engineering University, 2018 (in Chinese). | |
8 | GAN N, YAO X L, CHENG S H, et al. Experimental investigation on dynamic characteristics of ventilation bubbles on the surface of a vertical moving body[J]. Ocean Engineering, 2022, 246: 110641. |
9 | QU Z Y, YANG N N, MA G H, et al. Experimental study of unsteady evolution characteristics of ventilated air mass on the cylinder surface[J]. Ocean Engineering, 2022, 264: 112462. |
10 | XUE Y Z, CUI B, NI B Y. Numerical study on the vertical motion of underwater vehicle with air bubbles attached in a gravity field[J]. Ocean Engineering, 2016, 118: 58-67. |
11 | SUN T Z, ZHANG X S, XU C, et al. Experimental investigation on the cavity evolution and dynamics with special emphasis on the development stage of ventilated partial cavitating flow[J]. Ocean Engineering, 2019, 187: 106140. |
12 | ZHANG X S, WANG C, WEKESA D W. Numerical and experimental study of pressure-wave formation around an underwater ventilated vehicle[J]. European Journal of Mechanics-B, 2017, 65: 440-449. |
13 | 张孝石. 水下航行体空化流动与压力脉动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
ZHANG X S. Study on the cavitating flows and pressure fluctuation for underwater vehicle[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
14 | 高山, 施瑶, 潘光. 潜射航行体肩部通气流体动力特性数值研究[J]. 西北工业大学学报, 2021, 39(3): 463-470. |
GAO S, SHI Y, PAN G. Numerical investigation on fluid dynamic characteristics around shoulder ventilation of submarine-launched vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(3): 463-470 (in Chinese). | |
15 | XIANG M, CHEUNG S C P, TU J Y, et al. Numerical research on drag reduction by ventilated partial cavity based on two-fluid model[J]. Ocean Engineering, 2011, 38(17-18): 2023-2032. |
16 | SUN L Q, LI W P, MA G H, et al. Study on ventilated cavity uncertainty of the vehicle under stochastic conditions based on the Monte Carlo method[J]. Ocean Engineering, 2021, 239: 109789. |
17 | 于娴娴, 王一伟, 黄晨光, 等. 轴对称航行体通气云状空化非定常特征研究[J]. 船舶力学, 2014, 18(5): 499-506. |
YU X X, WANG Y W, HUANG C G, et al. Unsteady characteristics of ventilated cloud cavity around symmetrical bodies[J]. Journal of Ship Mechanics, 2014, 18(5): 499-506 (in Chinese). | |
18 | YU C, WANG Y W, HUANG C G, et al. Experimental and numerical investigation on cloud cavitating flow around an axisymmetric projectile near the wall with emphasis on the analysis of local cavity shedding[J]. Ocean Engineering, 2017, 140: 377-387. |
19 | WANG G Y, KONG D C, WU Q, et al. Physical and numerical study on unsteady shedding behaviors of ventilated partial cavitating flow around an axisymmetric body[J]. Ocean Engineering, 2020, 197: 106884. |
20 | 张忠宇, 陶延武, 李文娟, 等. 基于间断有限元方法高压通气空泡早期运动特性研究[C]∥第十六届全国水动力学学术会议暨第三十二届全国水动力学研讨会. 2021: 886-893. |
ZHANG Z Y, TAO Y W, LI W J, et al. Study on early motion characteristics of high pressure ventilated cavitation based on discontinuous finite element method[C]∥Proceedings of the 16th National Symposium on Hydrodynamics and the 32nd National Symposium on Hydrodynamics. 2021: 886-893 (in Chinese). | |
21 | ZOU W, YU K P, ARNDT R E A, et al. On the shedding of the ventilated supercavity with velocity disturbance[J]. Ocean Engineering, 2013, 57: 223-229. |
22 | 黄磊, 王生捷, 彭雪明, 等. 流线型回转体变攻角状态下的通气空泡水动力特性研究[J]. 水下无人系统学报, 2017, 25(2): 101-106. |
HUANG L, WANG S J, PENG X M, et al. Hydrodynamic force of ventilated cavitation with variable angle of attack on a revolved body with streamlined head[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 101-106 (in Chinese). | |
23 | LIU T T, HUANG B, WANG G Y, et al. Experimental investigation of ventilated partial cavitating flows with special emphasis on flow pattern regime and unsteady shedding behavior around an axisymmetric body at different angles of attack[J]. Ocean Engineering, 2018, 147: 289-303. |
24 | 孙铁志, 魏英杰, 王聪, 等. 孔状通气条件下潜射航行体流体动力特性研究[J]. 兵工学报, 2013, 34(11): 1424-1430. |
SUN T Z, WEI Y J, WANG C, et al. Research on hydrodynamic characteristics of submarine launched vehicle with ventilation holes[J]. Acta Armamentarii, 2013, 34(11): 1424-1430 (in Chinese). | |
25 | 魏桥栋. 水下多孔排气实验特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
WEI Q D. The experiment research on ventilated cavity[D]. Harbin: Harbin Engineering University, 2016 (in Chinese). | |
26 | 朴奕. 基于势流理论的水下排气气泡发展过程特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
PIAO Y. Study on characteristic of exhaust bubble underwater basing on potential flow theory[D]. Harbin: Harbin Engineering University, 2018 (in Chinese). | |
27 | 魏海鹏, 张晶, 张瑞明, 等. 水下航行体壁面多孔排气泡状流动特性实验研究[J]. 船舶力学, 2022, 26(11): 1584-1594. |
WEI H P, ZHANG J, ZHANG R M, et al. Experimental investigation on the characteristics of bubbly flow near the wall of underwater vehicle[J]. Journal of Ship Mechanics, 2022, 26(11): 1584-1594 (in Chinese). | |
28 | SHI Y, GAO S, PAN G, et al. RANS/LES investigation on the performance of air film fusion around a vertically launched underwater vehicle[J]. Ocean Engineering, 2022, 266: 112880. |
29 | 刘涛涛, 黄彪, 王国玉, 等. 垂直发射水下航行体的通气空化数值模拟研究[J]. 宇航总体技术, 2017, 1(4): 22-28. |
LIU T T, HUANG B, WANG G Y, et al. Numerical investigation of ventilated cavitating flows around a vertical underwater-launched projectile[J]. Astronautical Systems Engineering Technology, 2017, 1(4): 22-28 (in Chinese). | |
30 | YAO X L, GAN N, MA G H. Interactions between two parallel gas jets on the surface of an underwater vertical moving body[J]. Ocean Engineering, 2023, 286: 115597. |
31 | 秦勇. 均压气体对考虑波浪的航行体水动力特性影响机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
QIN Y. Effect of gas exhausting on hydrodynamic characteristic of underwater vehicle considering wave[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). | |
32 | 陈浮, 马贵辉, 程少华, 等. 直、斜孔排气对航行体绕流流动影响: Part 1: 流场结构[J]. 工程热物理学报, 2016, 37(3): 507-513. |
CHEN F, MA G H, CHENG S H, et al. Effect of straight or inclined hole exhaust on flow around underwater vehicle: part 1-flow field structure[J]. Journal of Engineering Thermophysics, 2016, 37(3): 507-513 (in Chinese). | |
33 | 胡少峰. 高速出水航行体表面均匀排气控制方法实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
HU S F. Experiment study on control method of uniformly ventilated cavitation on the surface of high-speed exceeding water vehicle[D]. Harbin: Harbin Engineering University, 2018 (in Chinese). | |
34 | 龚瑞岩. 均压排气气泡在水下航行体表面的融合特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
GONG R Y. Study on coalescence characteristics of pressure-equalizing exhaust bubbles on the surface of underwater vehicles[D]. Harbin: Harbin Engineering University, 2018 (in Chinese). | |
35 | SHI Y, REN J Y, GAO S, et al. Numerical investigation on air film fusion of pressure-equalizing exhaust around shoulder ventilation of submarine-launched vehicle[J]. Journal of Marine Science and Engineering, 2021, 10(1): 39. |
36 | 段磊, 王国玉, 付细能. 涡环泄气方式下通气空化的非定常流动特性研究[J]. 兵工学报, 2014, 35(5): 711-718. |
DUAN L, WANG G Y, FU X N. Research on the unsteady characteristics of ventilated cavitating flows in the form of gas-leakage by toroidal vortex[J]. Acta Armamentarii, 2014, 35(5): 711-718 (in Chinese). | |
37 | 杨茂, 王涵瑞, 邹志辉, 等. 通气协助航行体出水流动实验研究[J]. 兵器装备工程学报, 2022, 43(12): 29-33, 144. |
YANG M, WANG H R, ZOU Z H, et al. Experimental investigation on ventilated cavity flow characteristics of the vehicle water exit[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 29-33, 144 (in Chinese). | |
38 | 仇洋. 空腔排气对航行体水下发射过程影响的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
QIU Y. Numerical simulation research on the influence of cavity exhaust to the process of vehicle underwater launch[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). | |
39 | 孙龙泉, 颜皓, 马贵辉, 等. 环形槽对通气空泡融合的促进作用分析[J]. 力学学报, 2021, 53(2): 386-394. |
SUN L Q, YAN H, MA G H, et al. Analysis of the promoting effect of annular groove on the coalescence of ventilated cavity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 386-394 (in Chinese). | |
40 | 任泽宇, 孙龙泉, 姚熊亮, 等. 凹槽参数对通气空泡融合的影响[J]. 宇航总体技术, 2021, 5(3): 28-36. |
REN Z Y, SUN L Q, YAO X L, et al. Influence of groove parameters on ventilated bubble fusion[J]. Astronautical Systems Engineering Technology, 2021, 5(3): 28-36 (in Chinese). | |
41 | 黄磊, 黄瀚锐, 李晓旺, 等. 非对称通气空泡多相流场特性研究[J]. 现代防御技术, 2022, 50(1): 94-101. |
HUANG L, HUANG H R, LI X W, et al. Study on the characteristics of asymmetrical ventilated cavitating flows[J]. Modern Defence Technology, 2022, 50(1): 94-101 (in Chinese). | |
42 | 马贵辉, 陈浮, 俞建阳. 气孔排数对带排气航行体绕流流动影响研究[J]. 工程热物理学报, 2018, 39(9): 1945-1951. |
MA G H, CHEN F, YU J Y. Effect of number of rows of venting holes on flow around an underwater vehicle with pressure-equalizing exhaust[J]. Journal of Engineering Thermophysics, 2018, 39(9): 1945-1951 (in Chinese). | |
43 | 辛万青, 黄彪, 魏海鹏, 等. 跨介质航行体流体动力调控研究进展及新构想[J]. 导弹与航天运载技术, 2021(6): 1-6. |
XIN W Q, HUANG B, WEI H P, et al. A progress review and new methodology of the hydrodynamic control for cross-medium vehicles[J]. Missiles and Space Vehicles, 2021(6): 1-6 (in Chinese). | |
44 | CHEN S R, SHI Y, PAN G, et al. Experimental research on cavitation evolution and movement characteristics of the projectile during vertical launching[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1359. |
45 | 颜开, 王宝寿. 出水空泡流动的一些研究进展[C]∥第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会. 2008: 8. |
YAN K, WANG B S. Some research progress of water-exit cavity[C]∥Proceedings of the 21st National Symposium on Hydrodynamics and the 8th National Hydrodynamics Symposium and Cross-Strait Symposium on Hydrodynamics of Ships and Ocean Engineering. 2008: 8 (in Chinese). | |
46 | MA G H, CHEN F, YU J Y, et al. Effect of a pressure-equalizing film on the trajectory and attitude robustness of an underwater vehicle considering the uncertainty of the platform velocity[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1): 824-838. |
47 | MA G H, CHEN F, YU J Y, et al. Numerical investigation of trajectory and attitude robustness of an underwater vehicle considering the uncertainty of platform velocity and yaw angle[J]. Journal of Fluids Engineering, 2019, 141(2): 021106. |
48 | XU H, WEI Y J, WANG C, et al. On wake vortex encounter of axial-symmetric projectiles launched successively underwater[J]. Ocean Engineering, 2019, 189: 106382. |
49 | 尤天庆, 王占莹, 权晓波, 等. 尾空泡对水下航行体流体阻尼力影响数值计算分析[J]. 国防科技大学学报, 2016, 38(4): 64-68. |
YOU T Q, WANG Z Y, QUAN X B, et al. Numerical analysis of the tail cavity effect on underwater vehicle hydrodynamic damping force[J]. Journal of National University of Defense Technology, 2016, 38(4): 64-68 (in Chinese). | |
50 | 刘志勇, 颜开, 王宝寿. 潜射导弹尾空泡从生成到拉断过程的数值模拟[J]. 船舶力学, 2005, 9(1): 43-50. |
LIU Z Y, YAN K, WANG B S. Numerical simulation of the development process of a trailing cavity from generation to separation[J]. Journal of Ship Mechanics, 2005, 9(1): 43-50 (in Chinese). | |
51 | 燕国军, 阎君, 权晓波, 等. 水下航行体垂直发射尾部流场数值计算[J]. 导弹与航天运载技术, 2012(3): 42-46. |
YAN G J, YAN J, QUAN X B, et al. Numerical study on tail flow field of underwater vehicle in vertical launching[J]. Missiles and Space Vehicles, 2012(3): 42-46 (in Chinese). | |
52 | 权晓波, 燕国军, 李岩, 等. 水下航行体垂直发射尾空泡生成演化过程三维数值研究[J]. 船舶力学, 2014, 18(7): 739-745. |
QUAN X B, YAN G J, LI Y, et al. Three-dimensional numerical study on the evolution process of tail bubble of underwater vehicle vertical launching[J]. Journal of Ship Mechanics, 2014, 18(7): 739-745 (in Chinese). | |
53 | 任晓庆. 潜射航行体垂直发射过程三维数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
REN X Q. Three dimensional numerical simulation on vertical launch of underwater vehicle[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese). | |
54 | 闵景新, 李云波. 水下航行体变深度发射出筒空泡数值研究[J]. 工程力学, 2015, 32(): 342-347. |
MIN J X, LI Y B. Numerical study on cavitation of underwater vehicle launching from cylinder with variable depth[J]. Engineering Mechanics, 2015, 32(Sup 1): 342-347 (in Chinese). | |
55 | CHENG Y S, LIU H. Mathematical modeling of fluid flows for underwater missile launch[J]. Journal of Hydrodynamics, Ser B, 2006, 18(3): 492-497. |
56 | YANG Q, WANG Y L, WEI Y J, et al. Experimental study on tail cavity structure and pressure characteristics of underwater vehicle with tail jet[J]. Ocean Engineering, 2023, 281: 114843. |
57 | CHENG S H, QUAN X B, SHA Y Y, et al. Experimental investigation of the underwater ventilated tail cavity at different angles of attack[J]. Ocean Engineering, 2022, 261: 111916. |
58 | QU Z Y, YANG N N, MA G H, et al. Experimental study on ventilated cavity flow at the tail of underwater vehicle under low surface tension[J]. Ocean Engineering, 2023, 267: 113230. |
59 | YAO X L, QU Z Y, MA G H, et al. Experimental study on motion characteristics of cavity attached to the tail of underwater vehicle[J]. Journal of Marine Science and Engineering, 2023, 11(7): 1287. |
60 | 颜皓. 航行体出水过程尾空泡演化规律及载荷特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2021. |
YAN H. Analysis on the tail cavitation evolution mechanism and loading characteristics of the water-exit vehicle[D]. Harbin: Harbin Engineering University, 2021 (in Chinese). | |
61 | 张春, 王宝寿. 水下航行体超声速射流与尾空泡耦合作用初期的流场特性[J]. 兵工学报, 2022, 43(7): 1685-1694. |
ZHANG C, WANG B S. Flow field characteristics of the early-stage coupling interaction between supersonic jet and tail cavity of underwater vehicles[J]. Acta Armamentarii, 2022, 43(7): 1685-1694 (in Chinese). | |
62 | KNAPP R T, DAILY J W, HAMMITT F G. Cavitation[M]. New York: McGraw-Hill, 1970. |
63 | DYMENT A, FLODROPS J P, PAQUET J B, et al. Gaseous cavity at the base of an underwater projectile [J]. Aerospace Science and Technology, 1998, 2(8): 489-504. |
64 | 戚隆溪, 曹勇, 王柏懿. 水下欠膨胀高速气体射流的实验研究[J]. 力学学报, 2000, 32(6): 667-675. |
QI L X, CAO Y, WANG B Y. Experimental study of underexpanded sonic air jets in water[J]. Acta Mechanica Sinica, 2000, 32(6): 667-675 (in Chinese). | |
65 | 施红辉, 郭强, 王超, 等. 水下超音速气体射流胀鼓和回击的关联性研究[J]. 力学学报, 2010, 42(6): 1206-1210. |
SHI H H, GUO Q, WANG C, et al. Experiments on the relationship between bulging and back-attack of submerged supersonic gas jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1206-1210 (in Chinese). | |
66 | CALLENAERE M, FRANC J P, MICHEL J M, et al. The cavitation instability induced by the development of a re-entrant jet[J]. Journal of Fluid Mechanics, 2001, 444(1): 223-256. |
67 | CHENG S H, QUAN X B, ZHANG S, et al. Modeling tail bubble dynamics during the launch of an underwater vehicle using the boundary element method[J]. Journal of Hydrodynamics, 2022, 34(3): 434-443. |
68 | 程少华, 权晓波, 王占莹, 等. 水下航行体垂直发射尾部空泡形态与压力预示方法研究[J]. 水动力学研究与进展A辑, 2015, 30(3): 299-305. |
CHENG S H, QUAN X B, WANG Z Y, et al. Prediction method on trailing cavity shape and pressure of the underwater vehicle in vertical launching[J]. Chinese Journal of Hydrodynamics, 2015, 30(3): 299-305 (in Chinese). | |
69 | 高勇, 裴金亮, 鲍文春. 一种考虑尾空泡影响的航行体流体动力数值仿真计算模型[J]. 船舶力学, 2018, 22(1): 31-37. |
GAO Y, PEI J L, BAO W C. A numerical simulation model on studying the hydrodynamics of underwater vehicle considering the effect of tail-bubble[J]. Journal of Ship Mechanics, 2018, 22(1): 31-37 (in Chinese). | |
70 | ZAHID M Z, NADEEM M, ISMAIL M. Numerical study of submarine launched underwater vehicle[C]∥2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Piscataway: IEEE Press, 2020: 472-476. |
71 | 尤天庆, 权晓波, 刘元清, 等. 基于势流理论的尾空泡对航行体表面压力影响研究[J]. 船舶力学, 2021, 25(9): 1182-1188. |
YOU T Q, QUAN X B, LIU Y Q, et al. Effects of tail cavity on pressure distribution of underwater vehicle based on potential flow theory[J]. Journal of Ship Mechanics, 2021, 25(9): 1182-1188 (in Chinese). | |
72 | 权晓波, 尤天庆, 张晨星, 等. 水下垂直发射航行体尾空泡振荡演化特性[J]. 兵工学报, 2021, 42(8): 1728-1734. |
QUAN X B, YOU T Q, ZHANG C X, et al. Evolution properties of tail cavity oscillation of underwater launched vehicle[J]. Acta Armamentarii, 2021, 42(8): 1728-1734 (in Chinese). | |
73 | WU Q R, WANG L, XIE Y H, et al. Numerical simulation of the water-exit process of the missile based on Moving Particle Semi-Implicit method[J]. Journal of Physics: Conference Series, 2019, 1300(1): 012064. |
74 | 贾会霞, 施红辉, 胡俊辉, 等. 潜射超空泡射弹出水的流体力学现象的实验研究[J]. 船舶力学, 2017, 21(7): 814-820. |
JIA H X, SHI H H, HU J H, et al. Experiments on water exit phenomenon of underwater launched projectiles with a supercavity[J]. Journal of Ship Mechanics, 2017, 21(7): 814-820 (in Chinese). | |
75 | 任泽宇, 孙龙泉, 李志鹏, 等. 水下航行体空泡发展及出水溃灭特性实验研究[J]. 宇航总体技术, 2021, 5(1): 42-49. |
REN Z Y, SUN L Q, LI Z P, et al. Experimental study on the cavitation development and collapse characteristics of underwater vehicle[J]. Astronautical Systems Engineering Technology, 2021, 5(1): 42-49 (in Chinese). | |
76 | LI J, ZHENG J, JING S. Influence of cavitation state and launch angle on water-exit process of vehicle based on moving domain method[C]∥Proceedings of the 13th Asia Conference on Mechanical and Aerospace Engineering. 2022. |
77 | 赵蛟龙. 航行体出入水空泡载荷特性及缩比试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
ZHAO J L. Fluid dynamics and experimental investigation on the cavitation characteristics of the water-exit and-entry process of underwater vehicle[D]. Harbin: Harbin Engineering University, 2016 (in Chinese). | |
78 | 孙龙泉, 孙超, 赵蛟龙. 小尺度回转体出水过程弹射试验系统设计[J]. 传感器与微系统, 2014, 33(6): 76-79. |
SUN L Q, SUN C, ZHAO J L. System design on small-scale solid of revolution exiting water test of scaled missiles[J]. Transducer and Microsystem Technologies, 2014, 33(6): 76-79 (in Chinese). | |
79 | 刘可, 赵欣, 李智生. 发射速度对航行体出水姿态影响数值仿真研究[J]. 舰船电子工程, 2017, 37(7): 62-65, 129. |
LIU K, ZHAO X, LI Z S. Research on gesture of underwater vehicle exiting from different velocity by numerical simulation method[J]. Ship Electronic Engineering, 2017, 37(7): 62-65, 129 (in Chinese). | |
80 | 马贵辉. 等压排气改善潜射航行体出水特性及稳健性机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
MA G H. Mechanisms of improving the water exit characteristics and robustness of underwater launched vehicles with pressure-equalizing exhaust[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
81 | 燕国军, 梁欣欣, 张健, 等. 水下航行体垂直发射环境流场与弹道耦合数值模拟研究[J]. 节能技术, 2019, 37(4): 307-312. |
YAN G J, LIANG X X, ZHANG J, et al. Investigation on the vertical launching process of the underwater vehicle by couple the flow field and the hydro-ballistics[J]. Energy Conservation Technology, 2019, 37(4): 307-312 (in Chinese). | |
82 | 王红萍, 李智生, 阎肖鹏. 艇速对水下航行体出水姿态影响研究[J]. 舰船电子工程, 2019, 39(1): 135-138. |
WANG H P, LI Z S, YAN X P. Analysis of submarine velocity and its effects on exceeding water gesture of an underwater vehicle[J]. Ship Electronic Engineering, 2019, 39(1): 135-138 (in Chinese). | |
83 | 刘郡郡. 头部通气弹体出水过程研究[D]. 哈尔滨: 哈尔滨工程大学, 2020. |
LIU J J. The research of the head-ventilated projectile on the process of water-exit[D]. Harbin: Harbin Engineering University, 2020 (in Chinese). | |
84 | CHEN Y, LI J, GONG Z X, et al. LES investigation on cavitating flow structures and loads of water-exiting submerged vehicles using a uniform filter of octree-based grids[J]. Ocean Engineering, 2021, 225: 108811. |
85 | 权晓波, 李岩, 魏海鹏, 等. 航行体出水过程空泡溃灭特性研究[J]. 船舶力学, 2008, 12(4): 545-549. |
QUAN X B, LI Y, WEI H P, et al. Cavitation collapse characteristic research in the out-of-water progress of underwater vehicles[J]. Journal of Ship Mechanics, 2008, 12(4): 545-549 (in Chinese). | |
86 | 王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析[J]. 力学学报, 2012, 44(1): 39-48. |
WANG Y W, HUANG C G, DU T Z, et al. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 39-48 (in Chinese). | |
87 | WANG Y W, LIAO L J, DU T Z, et al. A study on the collapse of cavitation bubbles surrounding the underwater-launched projectile and its fluid-structure coupling effects[J]. Ocean Engineering, 2014, 84: 228-236. |
88 | WANG Y W, HUANG C G, FANG X, et al. On the internal collapse phenomenon at the closure of cavitation bubbles in a deceleration process of underwater vertical launching[J]. Applied Ocean Research, 2016, 56: 157-165. |
89 | 陈玮琪. 水下发射航行体空泡、气泡和自由面相互影响的理论研究[J]. 船舶力学, 2017, 21(8): 929-940. |
CHEN W Q. Theoretical study of the interaction of the underwater-vehicle cavity, free surface and gas bubble in launching[J]. Journal of Ship Mechanics, 2017, 21(8): 929-940 (in Chinese). | |
90 | 吕海波, 岳之光, 武龙龙, 等. 水下发射航行体出水过程瞬态响应的谱分析方法[J]. 宇航总体技术, 2017, 1(2): 42-45. |
LYU H B, YUE Z G, WU L L, et al. A spectrum analysis method of dynamic response of underwater vehicles under moving loads[J]. Astronautical Systems Engineering Technology, 2017, 1(2): 42-45 (in Chinese). | |
91 | 杨晨. 水下航行体出水冲击谱及非线性动力分析[D]. 大连: 大连理工大学, 2019. |
YANG C. Shock response spectrum and nonlinear dynamic analysis of underwater vehicle[D]. Dalian: Dalian University of Technology, 2019 (in Chinese). | |
92 | NGUYEN V T, PHAN T H, DUY T N, et al. Unsteady cavitation around submerged and water-exit projectiles under the effect of the free surface: A numerical study[J]. Ocean Engineering, 2022, 263: 112368. |
93 | 侯健, 施红辉, 孙亚亚, 等. 高速射弹出水过程中水弹道问题研究[J]. 弹道学报, 2017, 29(1): 51-56. |
HOU J, SHI H H, SUN Y Y, et al. Study on the trajectory of high-speed projectile exiting from water[J]. Journal of Ballistics, 2017, 29(1): 51-56 (in Chinese). | |
94 | 尤天庆, 张嘉钟, 王聪, 等. 航行体出水过程头部流场载荷特性分析[J]. 北京航空航天大学学报, 2011, 37(5): 610-614. |
YOU T Q, ZHANG J Z, WANG C, et al. Characteristic analysis of flow load around head during vehicles exit of water[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 610-614 (in Chinese). | |
95 | 韩守根, 杨岩, 刘丙鑫, 等. 基于重叠网格的航行体水动力特性计算[J]. 兵器装备工程学报, 2023, 44(1): 54-58, 167. |
HAN S G, YANG Y, LIU B X, et al. Calculation of hydrodynamic characteristics of vehicles based on overlapping grids[J]. Journal of Ordnance Equipment Engineering, 2023, 44(1): 54-58, 167 (in Chinese). | |
96 | ZHAO Q K, CHEN T, XIAO W, et al. Research on the characteristics of cavitation flow and pressure load during vertical water exit of different head-shaped vehicles[J]. Ocean Engineering, 2022, 265: 112663. |
97 | ZHUANG Q B, ZHANG H B, ZHAO C H, et al. Effects of the launch parameters on trans-phase stability performance and mechanism for submarine-launched missiles model[J]. Ocean Engineering, 2023, 283: 115083. |
98 | 孙金焕. 潜射体出水过程中仿生结构弱化波浪干扰与增强脱附性能及机理[D]. 长春: 吉林大学, 2023. |
SUN J H. The performance and mechanism of bionic structures on submarine-launched vehicle to weaken wave impact and enhance desorption during its water-exit process[D]. Changchun: Jilin University, 2023 (in Chinese). | |
99 | 卢佳兴, 王聪, 魏英杰, 等. 回转体齐射出水过程空泡演化规律与弹道特性实验研究[J]. 兵工学报, 2019, 40(6): 1226-1234. |
LU J X, WANG C, WEI Y J, et al. Experimental research on cavity evolution pattern and trajectory characteristics in the water-exit process of salvoed revolving bodies[J]. Acta Armamentarii, 2019, 40(6): 1226-1234 (in Chinese). | |
100 | 姜翼冲. 水下航行体齐射过程流场结构及弹道特性数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
JIANG Y C. Numerical study on the flow field structure and ballistic characteristics in the salvo process of underwater vehicles[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
101 | 高山, 潘光. 潜射航行体齐射非定常流场特性研究[J]. 数字海洋与水下攻防, 2020, 3(3): 271-275. |
GAO S, PAN G. Characteristics research on unsteady flow field during salvo of submarine-launched vehicles[J]. Digital Ocean & Underwater Warfare, 2020, 3(3): 271-275 (in Chinese). | |
102 | GAO S, SHI Y, PAN G, et al. Research on the effect of asymmetric bubbles on the load characteristics of projectiles during an underwater salvo[J]. Applied Ocean Research, 2022, 124: 103212. |
103 | 施瑶, 高山, 潘光. 双发回转体水下齐射流体动力特性数值仿真[J]. 水下无人系统学报, 2021, 29(5): 524-532. |
SHI Y, GAO S, PAN G. Numerical simulation of hydrodynamic characteristics of double-revolving bodies in underwater salvo[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 524-532 (in Chinese). | |
104 | SHI Y, GAO S, PAN G, et al. Simulation of the wake vortex and trajectory characteristics of successively launched multiple projectiles[J]. Ocean Engineering, 2022, 249: 110962. |
105 | 施瑶, 鲁杰文, 高山, 等. 筒口泄气影响下齐射出水运动干扰特性试验研究[J]. 华中科技大学学报(自然科学版), 2023, 51(4): 18-23, 54. |
SHI Y, LU J W, GAO S, et al. Experimental study on motion interference characteristics of salvo water under influence of tube outlet[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(4): 18-23, 54 (in Chinese). | |
106 | ZHAO Q K, XIAO W, YAO X L, et al. Experimental study on flow characteristics of cavitation bubbles in underwater vertical movement of double vehicles[J]. Ocean Engineering, 2022, 260: 111940. |
107 | LU J X, WANG C, SONG W C, et al. Experimental investigation on interference characteristics of projectiles launched successively underwater[J]. Ocean Engineering, 2022, 250: 110824. |
108 | 周东辉, 贾会霞, 施红辉, 等. 高速航行体齐射出水过程的空化与运动特性研究[J]. 空气动力学学报, 2023, 41(2): 64-74. |
ZHOU D H, JIA H X, SHI H H, et al. Research on cavitation and motion characteristics of high-speed vehicles exiting water in underwater salvo[J]. Acta Aerodynamica Sinica, 2023, 41(2): 64-74 (in Chinese). | |
109 | 周东辉, 施红辉, 鲁建华, 等. 水下高速航行体并联出水过程的空化特性研究[J]. 舰船科学技术, 2023, 45(4): 74-79. |
ZHOU D H, SHI H H, LU J H, et al. Cavitation characteristics of underwater high-speed vehicles exiting water in parallel[J]. Ship Science and Technology, 2023, 45(4): 74-79 (in Chinese). | |
110 | 田冠楠. 高速航行体出水空化载荷特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
TIAN G N. Study of load on cavitation exceeding water process of vehicle with high speed[D]. Harbin: Harbin Engineering University, 2014 (in Chinese). | |
111 | 李智生, 阎肖鹏, 李钊. 波浪扰动对水下航行体垂直出水运动影响研究[J]. 无线电工程, 2017, 47(4): 65-68. |
LI Z S, YAN X P, LI Z. Research on ocean wave’s impact on vertical motion of underwater-launched vehicle[J]. Radio Engineering, 2017, 47(4): 65-68 (in Chinese). | |
112 | 阎肖鹏, 李智生, 李钊. 海流对水下航行体垂直出水运动影响研究[J]. 无线电工程, 2017, 47(5): 102-105. |
YAN X P, LI Z S, LI Z. Research of ocean current impact on vertical motion of underwater-launched vehicle[J]. Radio Engineering, 2017, 47(5): 102-105 (in Chinese). | |
113 | 职明洋, 马贵辉, 任泽宇, 等. 规则波浪对水下航行体出水姿态参数的影响[J]. 宇航总体技术, 2022, 6(4): 15-26. |
ZHI M Y, MA G H, REN Z Y, et al. Analysis of the influence of regular waves on the water-exiting attitude parameters of underwater vehicle[J]. Astronautical Systems Engineering Technology, 2022, 6(4): 15-26 (in Chinese). | |
114 | 王之海, 刘可, 李智生. 水下航行体在非规则波中出水运动数值仿真研究[J]. 舰船电子工程, 2018, 38(7): 76-79. |
WANG Z H, LIU K, LI Z S. Research on the gesture of underwater vehicle exiting from irregular wave by numerical simulation method[J]. Ship Electronic Engineering, 2018, 38(7): 76-79 (in Chinese). | |
115 | 陈佳华, 吕海宁. 环境对航行体上浮速度和出水姿态的影响研究[J]. 装备制造技术, 2023(2): 24-30. |
CHEN J H, LYU H N. Study on the influence of environment on the floating speed and water attitude of the vehicle[J]. Equipment Manufacturing Technology, 2023(2): 24-30 (in Chinese). | |
116 | 刘元清, 崔军. 海流对出水空泡演化过程影响机理数值研究[J]. 宇航总体技术, 2020, 4(3): 55-61. |
LIU Y Q, CUI J. Numerical study on influence of cavity development induced by sea route during water exit[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 55-61 (in Chinese). | |
117 | 孙龙泉, 任泽宇, 李志鹏, 等. 波浪作用下水下航行体出水成功概率预报[J]. 国防科技大学学报, 2022, 44(5): 134-141. |
SUN L Q, REN Z Y, LI Z P, et al. Prediction of probability of successful water-exit for underwater vehicles under wave action[J]. Journal of National University of Defense Technology, 2022, 44(5): 134-141 (in Chinese). | |
118 | 马如相, 洪亮, 刘新月, 等. 不同海况等级对某水下航行体发射影响的仿真分析[J]. 兵器装备工程学报, 2022, 43(7): 203-208, 246. |
MA R X, HONG L, LIU X Y, et al. Simulation analysis of impact of different sea conditions on launch of a submarine-launched vehicle[J]. Journal of Ordnance Equipment Engineering, 2022, 43(7): 203-208, 246 (in Chinese). | |
119 | 蔡晓伟, 宣建明, 王宝寿, 等. 细长体穿越冰-水混合物的出水流场数值模拟[J]. 兵工学报, 2020, 41(): 79-90. |
CAI X W, XUAN J M, WANG B S, et al. Numerical simulation of outflow field of slender body crossing ice-water mixture[J]. Acta Armamentarii, 2020, 41(Sup 1): 79-90 (in Chinese). | |
120 | YOU C, SUN T Z, ZHANG G Y, et al. Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder[J]. Ocean Engineering, 2022, 245: 110443. |
121 | 创金顺. 物体垂直破冰的实验与数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2021. |
CHUANG J S. Experimental study and numerical analysis of vertical ice breaking[D].Harbin: Harbin Engineering University, 2021 (in Chinese). | |
122 | 汪春辉, 王嘉安, 王超, 等. 基于S-ALE方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110-3123. |
WANG C H, WANG J A, WANG C, et al. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123 (in Chinese). | |
123 | ZHANG G Y, YOU C, WEI H P, et al. Experimental study on the effects of brash ice on the water-exit dynamics of an underwater vehicle[J]. Applied Ocean Research, 2021, 117: 102948. |
124 | 岳军政, 吴先前, 黄晨光. 航行体出水破冰的多场耦合效应与相似律[J]. 力学学报, 2021, 53(7): 1930-1939. |
YUE J Z, WU X Q, HUANG C G. Multi-field coupling effect and similarity law of floating ice break by vehicle launched underwater[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1930-1939 (in Chinese). | |
125 | 张健宇. 航行体冰环境约束出水空泡演化及载荷特性研究[D]. 大连: 大连理工大学, 2021. |
ZHANG J Y. Study on cavity evolution and load characteristics of water exit of underwater vehicle constrained by ice environment[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
126 | 尤闯. 高速出水航行体与碎冰相互作用的预报模型及特性研究[D]. 大连: 大连理工大学, 2021. |
YOU C. Research on prediction model and characteristic of interaction between high speed water exit of a vehicle and brash ice[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
127 | SUN T Z, ZHANG J Y, WEI H P, et al. Experimental investigation of the influence of floating ices constraint on the cavity dynamics of an axisymmetric body during the water exit process[J]. Ocean Engineering, 2022, 244: 110383. |
128 | 尹瑞涛. 朝鲜“北极星” 4 潜射弹道导弹[J]. 兵器知识, 2020(11): 33-36. |
YIN R T. North Korea’s Polaris 4 submarine-launched ballistic missile[J]. Ordnance Knowledge, 2020(11): 33-36 (in Chinese). | |
129 | 方登建, 王旭刚, 张涛涛, 等. 潜地弹道导弹总体技术[M]. 北京: 兵器工业出版社, 2020. |
FANG D J, WANG X G, ZHANG T T, et al. Submarine ballistic missile overall technology[M]. Beijing: Weapons Industry Press, 2020 (in Chinese). | |
130 | 李虹, 吴小宁, 张秀刚. 俄罗斯布拉瓦潜射弹道导弹4发齐射简析[J]. 飞航导弹, 2018(9): 1-3. |
LI H, WU X N, ZHANG X G. Brief analysis of four salvos of Russian Brava submarine-launched ballistic missile[J]. Aerodynamic Missile Journal, 2018(9): 1-3 (in Chinese). |
[1] | Jingyu GU, Shuai LI, Aman ZHANG. Development and collapse mechanism of underwater vessel water exit cavitation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528820-528820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341