[1] CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623686 (in Chinese). 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8): 623686. [2] LAI J, ZHAO Z L, WANG X B, et al. Uniform pitching motion and angular rate effects on transverse jet interaction[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122866 (in Chinese). 赖江, 赵忠良, 王晓冰, 等. 匀速俯仰运动及角速率对横向喷流的影响[J]. 航空学报, 2019, 40(10): 122866. [3] GUAN Z S, RUAN W H, LIU W, et al. Study of trajectory-controlled thrust vector technology application in air defense missile[J]. Air & Space Defense, 2020, 3(2): 1-7 (in Chinese). 管再升, 阮文华, 刘伟, 等. 轨控推力矢量技术在防空导弹上的应用研究[J]. 空天防御, 2020, 3(2): 1-7. [4] JIA Q, WEI M Y, GUO D Y. Orbital lateral thrust/aerodynamic force blended control methodin high altitude[J]. Modern Defence Technology, 2015, 43(6): 61-67 (in Chinese). 贾倩, 魏明英, 郭大勇. 高空轨控式直接侧向力/气动力复合控制方法[J]. 现代防御技术, 2015, 43(6): 61-67. [5] VOTTA R, TRIFONI E, PEZZELLA G, et al. Numerical investigation of RCS jet interaction and plume impingement for Mars precision landing[C]//8th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2017. [6] DESPIRITO J. Turbulence model effects on cold-gas lateral jet interaction in a supersonic crossflow[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. [7] DESPIRITO J. Effects of turbulence model on prediction of hot-gas lateral jet interaction in a supersonic crossflow[C]//53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. [8] GNEMMI P, SEILER F. Interaction of a lateral jet with the projectile external flow[C]//Atmospheric Flight Mechanics Conference. Reston: AIAA, 2000. [9] SUN D C, YANG J W, BAI R B. The effect of gas properties on the lateral jet interaction flowfield[J]. Acta Aerodynamica Sinica, 2010, 28(6): 720-723 (in Chinese). 孙得川, 杨建文, 白荣博. 喷流气体性质对导弹侧向喷流流场的影响[J]. 空气动力学学报, 2010, 28(6): 720-723. [10] EBRAHIMI H. Numerical investigation of jet interaction in a supersonic freestream[C]//17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005. [11] DONG H B, LIU J, CHEN Z D, et al. Numerical investigation of lateral jet with supersonic reacting flow[J]. Journal of Spacecraft and Rockets, 2018, 55(4): 928-935. [12] DONG W Z. Numerical calculation and analysis of the effect of chemical nonequilibrium on hypersonic flow[D]. Beijing: Beihang University, 1996: 21-36 (in Chinese). 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996: 21-36. [13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [14] ZHAO H Y. Parallel numerical study of whole scramjet engine[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2005: 49-55 (in Chinese). 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2005: 49-55. [15] DING M S, LIU Q Z, JIANG T, et al. Simulation of magnetohydrodynamic heat shield system on reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124501 (in Chinese). 丁明松, 刘庆宗, 江涛, 等. 磁控热防护系统在天地往返运载器上的应用仿真[J]. 航空学报, 2021, 42(7): 124501. [16] YANG Y G, LIU J, TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1): 28-33 (in Chinese). 杨彦广, 刘君, 唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报, 2006, 24(1): 28-33. [17] PARK C. Review of chemical-kinetic problems of future NASA missions. Ⅰ: Earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3): 385-398. [18] SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. [19] PARK C, HOWE J T, JAFFE R L, et al. Review of chemical-kinetic problems of future NASA missions Ⅱ mars entries[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 9-23. [20] PARK C, JAFFE R, PARTRIDGE H. Chemical-kinetic parameters of hyperbolic Earth entry[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. [21] TONG T W, ABOU-ELLAIL M M, LI Y. Mathematical modeling of catalytic-surface combustion of reacting flows[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(3): 512-519. [22] KATTA V R, ROQUEMORE W M. Simulation of dynamic methane jet diffusion flames using finite rate chemistry models[J]. AIAA Journal, 1998, 36: 2044-2054. [23] PAO S P, DEERE K, ABDOL-HAMID K. Establishing approaches to modeling the Ares Ⅰ-Ⅹ and Ares Ⅰ roll control system with free-stream interaction[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. [24] STAHL B, ESCH H, GVLHAN A. Experimental investigation of side jet interaction with a supersonic cross flow[J]. Aerospace Science and Technology, 2008, 12(4): 269-275. [25] STAHL B, EMUNDS H, GüLHAN A. Experimental investigation of hot and cold side jet interaction with a supersonic cross-flow[J]. Aerospace Science and Technology, 2009, 13(8): 488-496. |