ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (2): 227098-227098.doi: 10.7527/S1000-6893.2022.27098
Previous Articles Next Articles
Fanmin MENG1, Nuo MA1, Wenchao MA1, Junhui MENG1,2(), Wenguang LI1
Received:
2022-03-02
Revised:
2022-03-18
Accepted:
2022-04-21
Online:
2023-01-25
Published:
2022-05-09
Contact:
Junhui MENG
E-mail:mengjh@bit.edu.cn
Supported by:
CLC Number:
Fanmin MENG, Nuo MA, Wenchao MA, Junhui MENG, Wenguang LI. Wet modal analysis and tests for inflatable wing with swept air-beams[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 227098-227098.
Table 3
Natural frequency comparison between simulation and test results
类别 | 阶数 | ||||||
---|---|---|---|---|---|---|---|
第1阶 | 第2阶 | 第3阶 | 第4阶 | 第5阶 | 平均误差/% | ||
传统直梁式充气翼 固有频率/Hz | 试验 | 10.3 | 27.1 | 63.9 | 71.4 | 83.8 | |
仿真 | 9.1 | 29.5 | 51.7 | 72.8 | 83.7 | ||
相对误差/% | 11.7 | 8.9 | 19.1 | 2.0 | 0.1 | 8.4 | |
前掠气梁充气翼 固有频率/Hz | 试验 | 8.2 | 25.9 | 51.0 | 73.0 | ||
仿真 | 8.2 | 23.7 | 57.0 | 72.3 | |||
相对误差/% | 0 | 8.5 | 11.8 | 1.0 | 5.3 | ||
后掠气梁充气翼 固有频率/Hz | 试验 | 7.9 | 27.0 | 53.2 | 73.9 | ||
仿真 | 8.6 | 23.8 | 46.9 | 66.6 | |||
相对误差/% | 8.9 | 11.9 | 11.8 | 9.9 | 10.6 |
1 | 邓坤, 安海霞, 陈伟. 柔性翼飞行器现状及关键技术分析[J]. 航天返回与遥感, 2016, 37(5): 19-26. |
DENG K, AN H X, CHEN W. Study of the status and critical techniques of flexible wing aircraft[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5): 19-26 (in Chinese). | |
2 | CADOGAN D, SMITH T, LEE R, et al. Inflatable and rigidizable wing components for unmanned aerial vehicles[C]∥44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
3 | PULLIAM W, NORRIS R. Historical perspective on inflatable wing structures[C]∥50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009. |
4 | 步禹宏, 杨燕初. 一种非对称充气机翼的设计方法与力学分析[J]. 计算机仿真, 2021, 38(12): 44-50, 236. |
BU Y H, YANG Y C. Research of designing methods and dynamics analysis of asymmetrical inflatable wing[J]. Computer Simulation, 2021, 38(12): 44-50, 236 (in Chinese). | |
5 | 霍文霞, 闵昌万, 焦子涵, 等. 一种高速充气翼设计与流固耦合研究[J]. 导弹与航天运载技术, 2019(1): 6-10. |
HUO W X, MIN C W, JIAO Z H, et al. High-speed inflatable wing design and fluid-structure interaction analysis[J]. Missiles and Space Vehicles, 2019(1): 6-10 (in Chinese). | |
6 | PANWAR S S, GUPTA R, ARIS A, et al. 3D-photogrammetric modal testing and data analysis of a cantilevered inflatable wing[C]∥AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
7 | SONG Y Y, GANDHI U, ARIS A. A baffled inflatable wing made from high performance textile materials: Design, analysis, and experiments[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
8 | 冯志壮, 李斌. 表面凹凸充气机翼的气动特性研究[J]. 航空工程进展, 2014, 5(1): 38-45. |
FENG Z Z, LI B. Investigation of aerodynamic behavior for bumpy inflatable wing[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1): 38-45 (in Chinese). | |
9 | 王伟, 王华, 贾清萍. 充气机翼承载能力和气动特性分析[J]. 航空动力学报, 2010, 25(10): 2296-2301. |
WANG W, WANG H, JIA Q P. Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J]. Journal of Aerospace Power, 2010, 25(10): 2296-2301 (in Chinese). | |
10 | 张俊韬, 侯中喜, 郭正. 高雷诺数二维充气机翼构形的气动特性[J]. 航空动力学报, 2017, 32(3): 657-665. |
ZHANG J T, HOU Z X, GUO Z. Aerodynamic performance of configurations of two-dimension inflatable wings under high Reynolds number[J]. Journal of Aerospace Power, 2017, 32(3): 657-665 (in Chinese). | |
11 | 李斌, 董楠楠, 冯志壮, 等. 充气机翼的褶皱与失效行为研究[J]. 航空学报, 2016, 37(10): 3044-3053. |
LI B, DONG N N, FENG Z Z, et al. Wrinkling and failure behavior research of inflated wing[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3044-3053 (in Chinese). | |
12 | 杨永强, 马云鹏, 武哲. 基于流固耦合的充气翼内压对翼面变形影响分析[J]. 北京航空航天大学学报, 2014, 40(2): 188-192. |
YANG Y Q, MA Y P, WU Z. Analysis of effect of interior pressure to deformation of inflatable wing with fluid-structure interaction analysis method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 188-192 (in Chinese). | |
13 | BROWN A, JOHNSON E. Modeling and flight testing of the longitudinal dynamics of an inflatable wing UAV[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2011. |
14 | CARBONE G, MARTINAT G, FARCY D, et al. Added masses of generic shape bodies interacting with external walls[J]. Aerospace Science and Technology, 2019, 90: 70-84. |
15 | CERUTI A, GAMBACORTA D, MARZOCCA P. Unconventional hybrid airships design optimization accounting for added masses[J]. Aerospace Science and Technology, 2018, 72: 164-173. |
16 | HU Y, CHEN W J, CHEN Y F, et al. Modal behaviors and influencing factors analysis of inflated membrane structures[J]. Engineering Structures, 2017, 132: 413-427. |
17 | 柳瑞锋, 黄嵘, 周相荣, 等. 船体低阶湿模态计算方法对比研究[J]. 船舶工程, 2014, 36(4): 25-28. |
LIU R F, HUANG R, ZHOU X R, et al. Contrast study on calculation method for lower order wet mode of ship hull[J]. Ship Engineering, 2014, 36(4): 25-28 (in Chinese). | |
18 | 高海健, 陈务军, 付功义. 预应力薄膜充气梁模态的分析方法及特性[J]. 华南理工大学学报(自然科学版), 2010, 38(7): 135-139. |
GAO H J, CHEN W J, FU G Y. Modal analysis method and modal behavior of prestressed inflatable fabric beam[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(7): 135-139 (in Chinese). | |
19 | 张祎贝, 陈务军, 邓小伟, 等. 薄膜结构空气与低真空环境下模态辨识仿真及试验[J]. 振动与冲击, 2020, 39(20): 168-174, 182. |
ZHANG Y B, CHEN W J, DENG X W, et al. Simulation and experiment for membrane modal identification in the air and low vacuum environment[J]. Journal of Vibration and Shock, 2020, 39(20): 168-174, 182 (in Chinese). | |
20 | 邱振宇, 陈务军, 赵兵, 等. 充气尾翼湿模态分析与试验研究[J]. 振动与冲击, 2016, 35(15): 140-143, 148. |
QIU Z Y, CHEN W J, ZHAO B, et al. Wet modal analysis and tests for pneumatic empennages[J]. Journal of Vibration and Shock, 2016, 35(15): 140-143, 148 (in Chinese). | |
21 | 邱振宇, 陈务军, 赵兵, 等. 飞艇主气囊结构湿模态分析与试验研究[J]. 振动与冲击, 2017, 36(12): 61-67, 82. |
QIU Z Y, CHEN W J, ZHAO B, et al. Wet modal analysis and experiment study on an airship envelop[J]. Journal of Vibration and Shock, 2017, 36(12): 61-67, 82 (in Chinese). | |
22 | 陈宇峰, 陈务军, 何艳丽, 等. 柔性飞艇主气囊干湿模态分析与影响因素[J]. 上海交通大学学报, 2014, 48(2): 234-238, 243. |
CHEN Y F, CHEN W J, HE Y L, et al. Dry and wet modal analysis and evaluation of influencing factors for flexible airship envelop[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2): 234-238, 243 (in Chinese). | |
23 | 陈宇峰, 陈务军, 邱振宇, 等. 空气对预应力薄膜结构模态的影响[J]. 浙江大学学报(工学版), 2015, 49(6): 1123-1127. |
CHEN Y F, CHEN W J, QIU Z Y, et al. Effects of air on modal behavior of pre-stressed membrane structure[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(6): 1123-1127 (in Chinese). | |
24 | 谢长川, 王伟建, 杨超. 充气式机翼的颤振特性分析[J]. 北京航空航天大学学报, 2011, 37(7): 833-838. |
XIE C C, WANG W J, YANG C. Flutter analysis of inflatable wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 833-838 (in Chinese). | |
25 | 金咸定, 夏利娟. 船体振动学[M]. 上海: 上海交通大学出版社, 2011: 128-162. |
JIN X D, XIA L J. Hull dynamics [M]. Shanghai: Shanghai Jiao Tong University Press, 2011: 128-162 (in Chinese). | |
26 | 谢多夫. 连续介质力学 [M]. 第6版. 北京: 高等教育出版社, 2007: 111-125. |
SEDOV L Z. Continuum mechanics [M]. 6th ed.Beijing: Higher Education Press, 2007:111-125 (in Chinese). | |
27 | 王仁. 力学模型及其局限性[J]. 力学与实践, 2001, 23(2): 70-72. |
WANG R. Mechanical models and their limitations [J]. Mechanics and Engineering, 2001, 23(2): 70-72 (in Chinese). | |
28 | 王敏中,王炜,武际可. 弹性力学教程[M]. 修订版. 北京: 北京大学出版社, 2011: 71-90. |
WANG M Z, WANG W, WU J K.Elastic mechanics tutorial [M]. revised edition. Beijing: Peking University Press, 2011: 71-90 (in Chinese). | |
29 | ZHAO W, DESAI S, MIGLANI J, et al. Structural and aeroelastic design, analysis, and experiments of inflatable airborne wings[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
30 | 孟军辉, 张艳博, 吕明云. 平流层飞艇蒙皮材料织物纤维拔出过程分析[J]. 北京航空航天大学学报, 2014, 40(8): 1149-1153. |
MENG J H, ZHANG Y B, LÜ M Y. Extracting process of stratospheric airship envelop fabric fiber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8): 1149-1153 (in Chinese). | |
31 | 孟军辉, 曹帅, 吕明云. 平流层飞艇蒙皮材料撕裂性能分析方法[J]. 宇航学报, 2015, 36(2): 230-235. |
MENG J H, CAO S, LV M Y. Analysis methods for tear properties of stratospheric airship envelope materials[J]. Journal of Astronautics, 2015, 36(2): 230-235 (in Chinese). | |
32 | 孟军辉, 张一, 刘东旭, 等. 升力体式浮升混合飞艇设计及参数分析[J]. 航空学报, 2015, 36(5): 1500-1510. |
MENG J H, ZHANG Y, LIU D X, et al. Design and parameter analysis of liftbody-type buoyancy-lifting hybrid airships[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1500-1510 (in Chinese). | |
33 | 王伟建,谢长川,杨超. 充气式翼面的振动与颤振特性分析[C]∥2011年中国浮空器大会论文集,2011: 180-189. |
WANG W J, XIE C C, YANG C. Analysis of vibration and flutter characteristics of inflatable wings [C]∥China Aerostat Conference, 2011: 180-189 (in Chinese). | |
34 | SUDDUTH C. Design of a hybrid rocket/inflatable wing UAV[D]. Oklahoma: Oklahoma State University, 2012: 70-122. |
35 | BOOKER A, FATHEPURE M, NELSEN T, et al. Conceptual design of an inflatable-winged aircraft for the exploration of titan[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
36 | 陈桂彬, 杨超, 邹丛青. 气动弹性设计基础[M]. 2版. 北京: 北京航空航天大学出版社, 2010: 79-94. |
CHEN G B, YANG C, ZOU C Q. Aeroelastic design fundamentals [M].2nd ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2010: 79-94 (in Chinese). | |
37 | 威廉·P. 罗登.万志强译. 气动弹性力学理论与计算[M]. 北京: 航空工业出版社, 2014:223-256. |
WILLIAM P R.WAN Z Q translater.Theoretical and computational aeroelasticity[M]. Beijing: Aviation Industry Press, 2014: 223-256 (in Chinese). | |
38 | 李卓然. ETFE气枕气-膜耦合作用的试验研究与数值模拟[D]. 北京: 北京交通大学, 2020: 25-37. |
LI Z R. Experimental and numerical study on the air-membrane interaction of ETFE cushions[D]. Beijing: Beijing Jiaotong University, 2020: 25-37 (in Chinese). | |
39 | 余建新, 卫剑征, 谭惠丰. 薄膜充气环动态特性试验研究[J]. 振动与冲击, 2013, 32(7): 11-16. |
YU J X, WEI J Z, TAN H F. Tests for thin film inflatable toruses[J]. Journal of Vibration and Shock, 2013, 32(7): 11-16 (in Chinese). | |
40 | GRIFFITH D T, MAIN J A. Experimental modal analysis and damping estimation for an inflated thin-film torus[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 609-617. |
[1] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[2] | Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811. |
[3] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[4] | Qixiang GAO, Dingwei ZHANG, Lijun YANG, Qingfei FU. Experiment on dynamic characteristics of swirl injector under back pressure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127130-127130. |
[5] | Yanfei ZUO, Yiliu WU, Jie WANG, Kun FENG, Zhinong JIANG. Influence of temperature-induced material property changes on dynamic characteristics of engine dual-rotor system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 226993-226993. |
[6] | Wenlong BAO, He JIA, Xiaopeng XUE, Xuejiao HUANG, Shuyi GAO, Wei RONG, Qi WANG, Zhuangzhi WU. Influence of ‘windows’ structure on inflation process of ringsail parachute [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226936-226936. |
[7] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[8] | Limin GAO, Bo OUYANG, Heng JIANG, Ning GE, Ruiyu LI. Experimental study on cut-off frequency of fast response pressure sensitive paint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 127556-127556. |
[9] | FU Yang'aoxiao, DING Mingsong, LIU Qingzong, JIANG Tao, SHI Run, DONG Weizhong, GAO Tiesuo. Numerical study of hot jet interaction effect in divert control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125941-125941. |
[10] | ZHOU Wei, MA Peiyang, GUO Zheng, WANG Daoping, ZHOU Ruisun. Research of combined fixed-wing UAV based on wingtip chained [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 325946-325946. |
[11] | AN Liping, WANG Hao, WANG Yangang, ZHU Zihuan. Wet compression performance and flow characteristics of transonic compressor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 126024-126024. |
[12] | WU Qiang, XU Haojun, WEI Yang, PEI Binbin, XUE Yuan. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125566-125566. |
[13] | LI Yueming, LI Xiaoyun, CHAI Yijun, YANG Xiongwei. Dynamic response analysis of nose landing gear in aircraft new towing and taxiing mode [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526915-526915. |
[14] | LI Yueming, LI Xiaoyun, CHAI Yijun, YANG Xiongwei. Dynamic response analysis of nose landing gear in aircraft new towing and taxiing mode [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526915-526915. |
[15] | WANG Lixin, TIAN Jiao, WANG Jin, LIU Hailiang, YUE Ting. Closed-loop dynamic characteristics requirements of military aircrafts via mission-oriented evaluation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527439-527439. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341