Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (15): 630225-630225.doi: 10.7527/S1000-6893.2024.30225
• special column • Previous Articles Next Articles
Dingchong LYU1, Shoujun ZHAO2,3, Si ZENG2,3, Jian FU1(), Xintong HU1, Huixiang LIU2, Kefei MIAO2,3, Yongling FU1
Received:
2024-01-24
Revised:
2024-02-19
Accepted:
2024-04-19
Online:
2024-08-15
Published:
2024-06-11
Contact:
Jian FU
E-mail:fujian@buaa.edu.cn
Supported by:
CLC Number:
Dingchong LYU, Shoujun ZHAO, Si ZENG, Jian FU, Xintong HU, Huixiang LIU, Kefei MIAO, Yongling FU. Key technologies and challenges of high⁃performance servo⁃motor⁃pumps[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630225-630225.
Table 1
Comparison of different hydraulic pump characteristics in the field of robotics[17]
Pump feature | Type of pump | ||||
---|---|---|---|---|---|
Centrifugal | Piston | Impeller | Screw | Gear | |
Self-priming | No | Limited | Yes | Limited | Limited |
Pressure range | Low | Low to high | Low to high | Low | Low to high |
Weight | Low | High | Low to high | High | Low to high |
Two-way pumping | No | Limited | Yes | Yes | Yes |
Wide speed range | No | Limited | Yes | No | Yes |
Efficiency | Low | High | Low | Low | Low to high |
Complexity of construction | High | High | Low | High | Low |
Table 2
Comparison of motor-pumps in typical fields
典型应用领域 | 动力元件 (发展阶段) | 具体应用场景;动力元件类型 | 典型技术特征 |
---|---|---|---|
航空航天 | 伺服电机泵 (第Ⅲ阶段) | 1) 火箭摇摆发动机[ 2) 军用飞机 F-35[ 3) 民用飞机 A380;SMP\IMP | 1) 对动态性能要求高(二阶带宽15 Hz左右) 2) 高压力(35 MPa)、高转速(15 000 r/min)且工作在变转速下 3) 液压泵种类通常为功率密度高、效率高的轴向柱塞泵 |
机器人 | 伺服电机泵 (第Ⅲ阶段) | 1) 灵巧手[ 2) 医用外骨骼[ 3) 仿生机器人[ | 1) 微型化(尺寸小,排量小,压力低),电机与泵集成度高 2) 对动态性能要求高,能够快速启停/换向 3) 多采用结构简单的齿轮泵,效率低(10%~28%) |
航海 | 集成电机泵 (第Ⅱ阶段) | 1) 船舶[ 2) 潜艇[ 3) 水下自主航行器;EMDP | 1) 船舶的作动方案以传统液压驱动系统为主,动力元件是电动泵 2) 集成电机泵的低噪音特性符合潜艇的需求,有应用潜力 3) 采用柱塞泵、齿轮泵、叶片泵等各种类型的液压泵 |
工业设备 | 电动泵 (第Ⅰ阶段) | 1) 工程机械;EMDP 2) 坦克炮作动系统[ 3) 加工机械 加工中心[ | 1) 工业上多采用传统液压系统和分体式电动泵 2) 排量固定,转速固定,负载大 3) 军用设备对驱动系统有快速响应的需求 |
Table 3
Rated parameters of rudder system FRYDEMBO HS180X2S[5]
Parameter | Value |
---|---|
Rated mechanical power (two pumps) | 26 kW |
Rated electric power (two pumps ) | 59 kW (440 V, 60 Hz) |
Rated efficiency | 44.3% |
Rated speed (two pumps) | 0.77 r/min |
Rated operating torque | 322 kN·m |
Maximum operating torque | 462 kN·m |
Mechanical design torque | 604 kN·m |
Overall weight | 4 300 kg |
Volume (exluding pipes) | 3 m3 |
Plant footprint (excluding auxiliaries) | 9 m2 |
1 | ZHAO S J, HE J, ZHANG Y Q. The study on the dynamic capability of an electro-hydrostatic actuator to drive a large inertia load[C]∥2016 IEEE International Conference on Aircraft Utility Systems. Piscataway: IEEE Press, 2016: 836-841. |
2 | ZHAO J A, FU J, LI Y C, et al. Flow characteristics of integrated motor-pump assembly with phosphate ester medium for aerospace electro-hydrostatic actuators[J]. Chinese Journal of Aeronautics, 2023, 36(9): 392-407. |
3 | BATISTA T A R. Modeling and analysis of an electro-hydrostatic system using asymmetrical cylinder for industrial and mobile machinery[D]. Florianópolis: Universidade Federal de Santa Catarina, 2018: 53. |
4 | MARÉ J C. Aerospace actuators 2: Signal-by-wire and power-by-wire[M]. London: ISTE Ltd., 2017: ix-xxvi. |
5 | BRUZZESE C, TESSAROLO A, MAZZUCA T, et al. A closer look to conventional hydraulic ship actuator systems and the convenience of shifting to (possibly) all-electric drives[C]∥2013 IEEE Electric Ship Technologies Symposium. Piscataway: IEEE Press, 2013: 220-227. |
6 | 廖健, 何琳, 陈宗斌, 等. 潜艇操舵系统噪声综述[J]. 中国舰船研究, 2022, 17(5): 74-84. |
LIAO J, HE L, CHEN Z B, et al. Overview of submarine steering system noise[J]. Chinese Journal of Ship Research, 2022, 17(5): 74-84 (in Chinese). | |
7 | KARANOVIĆ V, JOCANOVIĆ M, JOVANOVIĆ V. Review of development stages in the conceptual design of an electro hydrostatic actuator for robotics[J]. Acta Polytechnica Hungarica, 2014, 11(5): 59-79. |
8 | RAGHAVENDRA D R. Electrohydraulic servo systems[M]. Singapore: Springer, 2023: 43-90. |
9 | 付永领, 李祝锋, 安高成, 等. 电液泵发展现状与关键技术综述[J]. 机床与液压, 2012, 40(1): 143-149, 160. |
FU Y L, LI Z F, AN G C, et al. State of the art and core techniques of edropump[J]. Machine Tool & Hydraulics, 2012, 40(1): 143-149, 160 (in Chinese). | |
10 | CROWDER R, MAXWELL C. Simulation of a prototype electrically powered integrated actuator for civil aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1997, 211(6): 381-394. |
11 | ZHU D M, WANG M K, FU Y L. Design and validation of electro-hydraulic pumping unit for smart manufacturing[J/OL]. The International Journal of Advanced Manufacturing Technology, 2022. (2022-04-19)[2024-01-24]. . |
12 | 赵升吨, 张宗元, 徐凡, 等. 电磁直驱式液压泵及其发展趋势[J]. 液压与气动, 2014, 38(2): 1-9. |
ZHAO S D, ZHANG Z Y, XU F, et al. Direct drive motor-pump and its development trend[J]. Chinese Hydraulics & Pneumatics, 2014, 38(2): 1-9 (in Chinese). | |
13 | MARÉ J C, FU J. Review on signal-by-wire and power-by-wire actuation for more electric aircraft[J]. Chinese Journal of Aeronautics, 2017, 30(3): 857-870. |
14 | GOLJAT S, LOVREC D, TIČ V. Advantages of pump controlled electro hydraulic actuators[C]∥New Technologies, Development and Application IV. 2021: 774-780. |
15 | LIU L, ZHANG P, ZHAO S J, et al. A test method for the static and dynamic characteristics of servo-motor-pumps[C]∥2018 CSAA/IET International Conference on Aircraft Utility Systems. London: Institution of Engineering and Technology, 2018: 129-133. |
16 | 蔡向朝. 电机泵国内外研究现状分析[J]. 液压气动与密封, 2018, 38(9): 1-3, 7. |
CAI X C. Analysis on the research status of motor pump at home and abroad[J]. Hydraulics Pneumatics & Seals, 2018, 38(9): 1-3, 7 (in Chinese). | |
17 | KARGOV A, WERNER T, PYLATIUK C, et al. Development of a miniaturised hydraulic actuation system for artificial hands[J]. Sensors and Actuators A: Physical, 2008, 141(2): 548-557. |
18 | A-6B2 Electrohydrostatic Actuation Committee. Aerospace fluid power electrohydrostatic module, design, performance and test recommendations: ARP 6154 [S]. Warrendale: SAE International, 2017. |
19 | HUANG X Y, GOODMAN A, GERADA C, et al. Design of a five-phase brushless DC motor for a safety critical aerospace application[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3532-3541. |
20 | KUMAR M. A survey on electro hydrostatic actuator: Architecture and way ahead[J]. Materials Today: Proceedings, 2021, 45(7): 6057-6063. |
21 | ALLE N, HIREMATH S S, MAKARAM S, et al. Review on electro hydrostatic actuator for flight control[J]. International Journal of Fluid Power, 2016, 17(2): 125-145. |
22 | ZHAO J A, FU Y L, MA J M, et al. Review of cylinder block/valve plate interface in axial piston pumps: Theoretical models, experimental investigations, and optimal design[J]. Chinese Journal of Aeronautics, 2021, 34(1): 111-134. |
23 | HUANG X Y, BRADLEY K, GOODMAN A, et al. Fault-tolerant brushless DC motor drive for electro-hydrostatic actuation system in aerospace application[C]∥2006 IEEE Industry Applications Society Annual Meeting. Piscataway: IEEE Press, 2006: 473-480. |
24 | 石宏康. 基于碳化硅功率器件的永磁同步电机驱动系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 5-8. |
SHI H K. Research on permanent magnet synchronous motor drive system based on silicon carbide power device[D]. Harbin: Harbin Institute of Technology, 2018: 5-8 (in Chinese). | |
25 | 中国航天工业总公司. 流量电液伺服阀通用规范: [S]. 北京: 中国航天工业总公司, 1996. |
China Aerospace Industry Corp. General specification for flow electrohydraulic servo valve: [S]. Beijing: China Aerospace Industry Corp., 1996 (in Chinese). | |
26 | 北京华德液压工业集团有限责任公司, 浙江大学, 深圳市科斯腾液压设备有限公司, 等. 液压传动泵、马达稳态性能的试验方法标准: [S]. 北京: 中国标准出版社, 2023. |
Beijing Huade Hydraulic Industrial Group Co., Ltd., Zhejiang University, Shenzhen Kesiteng Hydraulic Equipment Co., Ltd., et al. Hydraulic fluid power - Pumps, motors - Methods of testing steady-state performance: [S]. Beijing: Standards Press of China, 2023 (in Chinese). | |
27 | 北京华德液压工业集团有限责任公司, 贵州力源液压股份有限公司, 北京机械工业自动化研究所. 液压轴向柱塞泵: [S]. 北京: 机械工业出版社, 2006. |
Beijing Huade Hydraulic Industrial Group Co., Ltd., Guizhou Liyuan Hydraulic Co., Ltd., Beijing Research Institute of Automation for Machinery Industry Co., Ltd. Hydraulic axial piston pumps: [S]. Beijing: China Machine Press, 2006 (in Chinese). | |
28 | 西安微电机研究所, 淄博得普达电机有限公司, 贵州航天林泉电机有限公司, 等. 交流伺服电动机通用技术条件: [S]. 北京: 中国标准出版社, 2015. |
Xi'an Micromotor Research Institute Co., Ltd., Zibo Depuda Electric Motor Co., Ltd., Guizhou Aerospace Linquan Motor Co., Ltd., et al. General specification for AC servomotors: [S]. Beijing: Standards Press of China, 2015 (in Chinese). | |
29 | 腾益登. 技术前沿-综述电液执行器EHA市场的引领者[EB/OL]. 上海: iHydrostatics静液压, 2019. (2019-04-15)[2024-01-24]. . |
TENG Y D. Technology frontier: A comprehensive overview of the leaders in the electro-hydraulic actuator (EHA) market[EB/OL]. Shanghai: iHydrostatics, 2019. (2019-04-15)[2024-01-24]. (in Chinese). | |
30 | Inc Moog. Modular electrohydrostatic actuation system[EB/OL]. East Aurora: Moog Inc., 2020. (2020-10)[2024-01-24]. . |
31 | Inc Moog. Compact electrohydrostatic actuation system[EB/OL]. East Aurora: Moog Inc., 2023. (2023-02)[2024-01-24]. . |
32 | Parker Hannifin Corp. Launching innovation[EB/OL]. Cleveland: Parker Hannifin Corp., 2017. [2024-01-24]. . |
33 | Parker Hannifin Corp. Parker compact electro-hydraulic actuator (EHA)[EB/OL]. Cleveland: Parker Hannifin Corp., 2011. (2011-04-01)[2024-01-24]. . |
34 | BAMSHAD H, JANG S W, JEONG H M, et al. Comparison between genetic programming and dynamic models for compact electrohydraulic actuators[J]. Machines, 2022, 10(10): 961. |
35 | Corp Eaton. Delivering power from source to actuation[EB/OL]. Dublin: Eaton Corp., 2020. (2020-03)[2024-01-24]. . |
36 | Corp Eaton. Integrated motor pump[EB/OL]. Dublin: Eaton Corp., 2000. [2024-01-24]. . |
37 | Corp Eaton. Power units[EB/OL]. Dublin: Eaton Corp., 2002. (2002-04)[2024-01-24]. . |
38 | Group Voith. CLDP servo drives: Maximum flexibility and high energy efficiency for test benches[EB/OL]. Heidenheim: Voith Group, 2019. (2019-05-06)[2024-01-24]. . |
39 | Group Voith. DrivAx CLDP: Self-contained servo drives[EB/OL]. Heidenheim: Voith Group, 2022. [2024-01-24]. . |
40 | Bosch Rexroth AG. Servo-hydraulic actuator: SHA[EB/OL]. Lohr am Main: Bosch Rexroth AG, 2021. (2021-04)[2024-01-24]. . |
41 | Hoerbiger Automatisierungstechnik Gmbh. ePrAX: The servo drive[EB/OL]. Altenstadt: Hoerbiger Automatisierungstechnik Gmbh, 2016. [2024-01-24]. . |
42 | CHAO Q, ZHANG J H, XU B, et al. A review of high-speed electro-hydrostatic actuator pumps in aerospace applications: Challenges and solutions[J]. Journal of Mechanical Design, 2019, 141(5): 050801. |
43 | 马纪明, 付永领, 李军, 等. 一体化电动静液作动器(EHA)的设计与仿真分析[J]. 航空学报, 2005, 26(1): 79-83. |
MA J M, FU Y L, LI J, et al. Design, simulation and analysis of integrated electrical hydrostatic actuator[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 79-83 (in Chinese). | |
44 | 付永领, 邵云滨, 齐海涛, 等. 集成电动静液作动系统理论与技术[J]. 液压与气动, 2015, 39(5): 1-9. |
FU Y L, SHAO Y B, QI H T, et al. Integrated electro-hydrostatic actuator system: Theory and technology[J]. Chinese Hydraulics & Pneumatics, 2015, 39(5): 1-9 (in Chinese). | |
45 | SITZ J R. F-18 systems research aircraft facility[C]∥1992 Aerospace Technology Conference and Exposition. Warrendale: SAE International, 1992: 922063. |
46 | JENSEN S C, JENNEY G D, DAWSON D. Flight test experience with an electromechanical actuator on the F-18 systems research aircraft[C]∥19th Conference on Digital Avionics Systems. Piscataway: IEEE Press, 2000: 2.E.3. |
47 | FU J, FU Y L, ZHANG P. Status and development of electrically powered actuators for aerospace application[C]∥2018 CSAA/IET International Conference on Aircraft Utility Systems. London: Institution of Engineering and Technology, 2018: 270-275. |
48 | 付永领, 韩旭, 杨荣荣, 等. 电动静液作动器设计方法综述[J]. 北京航空航天大学学报, 2017, 43(10): 1939-1952. |
FU Y L, HAN X, YANG R R, et al. Review on design method of electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1939-1952 (in Chinese). | |
49 | 关栋, 杨小辉, 刘更, 等. 功率电传作动系统用电机关键技术及其发展趋势[J]. 微特电机, 2012, 40(5): 71-75. |
GUAN D, YANG X H, LIU G, et al. Development trend and key technologies of the electrical motor for power-by-wire actuator system[J]. Small & Special Electrical Machines, 2012, 40(5): 71-75 (in Chinese). | |
50 | KAMINAGA H, AMARI T, NIWA Y, et al. Electro-hydrostatic actuators with series dissipative property and their application to power assist devices[C]∥2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway: IEEE Press, 2010: 76-81. |
51 | XIA Q C, LI H, SONG N, et al. Research on flexible collapsible fluid-driven bionic robotic fish[J]. Ocean Engineering, 2023, 276: 114203. |
52 | KAMINAGA H, ONO J, NAKASHIMA Y, et al. Development of backdrivable hydraulic joint mechanism for knee joint of humanoid robots[C]∥2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2009: 1577-1582. |
53 | KAMINAGA H, AMARI T, NIWA Y, et al. Development of knee power assist using backdrivable electro-hydrostatic actuator[C]∥2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2010: 5517-5524. |
54 | ALFAYAD S, OUEZDOU F B, NAMOUN F, et al. High performance integrated electro-hydraulic actuator for robotics - Part I: Principle, prototype design and first experiments[J]. Sensors and Actuators A: Physical, 2011, 169(1): 115-123. |
55 | 查乐, 于安斌, 龚佳敏, 等. 集成电机泵喷器运用于潜艇上的一种方案[J]. 中国水运, 2015, 15(3): 85-86. |
ZHA L, YU A B, GONG J M, et al. A scheme for the application of integrated motor pump jet on submarines[J]. China Water Transport, 2015, 15(3): 85-86 (in Chinese). | |
56 | 王超, 汪国胜, 李睿, 等. 坦克装甲车辆主动悬挂结构技术发展综述[J]. 兵工学报, 2020, 41(12): 2579-2592. |
WANG C, WANG G S, LI R, et al. Review of state of the art of active suspension structure technology of tank and armored vehicle[J]. Acta Armamentarii, 2020, 41(12): 2579-2592 (in Chinese). | |
57 | 屠跃跃, 李鹏忠, 杨勇. 液体静压导轨在龙门移动式加工中心的应用[J]. 机械研究与应用, 2013, 26(2): 66-68. |
TU Y, LI P Z, YANG Y. Application of hydrostatic guideway in CNC gantry moving type machining center[J]. Mechanical Research & Application, 2013, 26(2): 66-68 (in Chinese). | |
58 | WABNER M, LAW M, IHLENFELDT S. Dynamic modelling of an electro-hydraulic actuator to isolate machine tools from ground vibrations[C]∥11th International Conference on High Speed Machining. Prague: MM Science Journal, 2014: HSM 2014-14038. |
59 | 李婉辰. 直驱式自行火炮弹药输送车载供弹电液伺服系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 4-7. |
LI W C. Research on the electro hydraulic servo system of direct drive type self propelled artillery ammunition transportation vehicle[D]. Harbin: Harbin Institute of Technology, 2016: 4-7 (in Chinese). | |
60 | 付永领, 王明康, 李林杰, 等. 一种用于坦克炮的集成化电静液伺服作动器: 中国, ZL202010620316.6[P]. 2021-08-24. |
FU Y L, WANG M K, LI L J, et al. An integrated electro-hydrostatic servo actuator for tank guns: China, ZL202010620316.6[P]. 2021-08-24 (in Chinese). | |
61 | 冀宏, 张立升, 王峥嵘, 等. 电动液压动力单元的一体化演变[J]. 机床与液压, 2011, 39(19): 117-120. |
JI H, ZHANG L S, WANG Z R, et al. Development of integration of electro-hydraulic power unit[J]. Machine Tool & Hydraulics, 2011, 39(19): 117-120 (in Chinese). | |
62 | 刘磊. 空天飞机重量估算方法研究[D]. 南京: 南京航空航天大学, 2016: 1-3. |
LIU L. Study on weight estimation method for aerospace plane[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 1-3 (in Chinese). | |
63 | 宋东彬, 闫炬壮, 杨文将, 等. 面向电动航空的高温超导电机技术研究发展[J]. 航空学报, 2023, 44(9): 027469. |
SONG D B, YAN J Z, YANG W J, et al. Technology development of high temperature superconducting machine for electric aviation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027469 (in Chinese). | |
64 | 傅恒志. 航空航天材料定向凝固[M]. 北京: 科学出版社, 2015: 1-2. |
FU H Z. Directional solidification processing of aero-high temperature materials[M]. Beijing: China Science Publishing & Media Ltd., 2015: 1-2 (in Chinese). | |
65 | BOSSCHE D V D. The A380 flight control electrohydrostatic actuators, achievements and lessons learnt[C]∥25th International Congress of the Aeronautical Sciences. Bonn: International Council of the Aeronautical Sciences, 2006: 7.4.1. |
66 | XUE L X, WU S, XU Y Z, et al. A simulation-based multi-objective optimization design method for pump-driven electro-hydrostatic actuators[J]. Processes, 2019, 7(5): 274. |
67 | DAVIES P, REAUD Y, DUSSUD L, et al. Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations[J]. Ocean Engineering, 2011, 38(17-18): 2208-2214. |
68 | WANG J, GAO F, ZHANG Y. High power density drive system of a novel hydraulic quadruped robot[C]∥38th Mechanisms and Robotics Conference. New York: ASME, 2015: DETC 2014-34804. |
69 | SAKAGAMI Y, WATANABE R, AOYAMA C, et al. The intelligent ASIMO: System overview and integration[C]∥2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2002: 2478-2483. |
70 | IBRAHIM A A H, AMMOUNAH A, ALFAYAD S, et al. Hydraulic robotic leg for HYDROïD robot: Modeling and control[J]. Journal of Robotics and Mechatronics, 2022, 34(3): 576-587. |
71 | 汤伟, 黄勇, 傅澔. 推力矢量对飞机大迎角动态气动特性的影响[J]. 航空学报, 2018, 39(4): 121648. |
TANG W, HUANG Y, FU H. Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 121648 (in Chinese). | |
72 | 杨弘枨. 推力矢量伺服系统智能建模与控制方法研究[D]. 北京: 中国运载火箭技术研究院, 2023: 3. |
YANG H C. Research on intelligent modeling and control methods for thrust vector control systems[D]. Beijing: China Academy of Launch Vehicle Technology, 2023: 3 (in Chinese). | |
73 | 付永领, 李祝锋, 祁晓野, 等. 轴向柱塞式电液泵能量转化效率研究[J]. 机械工程学报, 2014, 50(14): 204-212. |
FU Y L, LI Z F, QI X Y, et al. Research on the energy conversion efficiency of axial piston electro-hydraulic pump[J]. Journal of Mechanical Engineering, 2014, 50(14): 204-212 (in Chinese). | |
74 | GARRISON M, STEFFAN S. Two-fault tolerant electric actuation systems for space applications[C]∥42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
75 | ZHANG P, ZHAO S J, ZENG S, et al. A triplex electro-hydrostatic actuator with embedded servo-motor-pumps and power electronics[C]∥9th International Conference on Recent Advances in Aerospace Actuation Systems and Components. Toulouse: INSA de Toulouse, 2023: 7-11. |
76 | IYAGHIGBA S D, ALI F, JENNIONS I K. A review of diagnostic methods for hydraulically powered flight control actuation systems[J]. Machines, 2023, 11(2): 165. |
77 | 闫楚良. 中国飞机结构寿命可靠性评定技术的发展与展望[J]. 航空学报, 2022, 43(10): 527869. |
YAN C L. Development and prospect of aircraft structural life reliability assessment technology in China[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527869 (in Chinese). | |
78 | 兰雪. GO-FLOW法在电静液作动器可靠性分析中的应用研究[D]. 大连: 大连理工大学, 2017: 7-8. |
LAN X. Research on the application of GO-FLOW methodology in the reliability analysis of electro-hydrostatic actuator[D]. Dalian: Dalian University of Technology, 2017: 7-8 (in Chinese). | |
79 | 荘露, 陆中, 宋海靖, 等. 基于故障注入模型的电传飞控系统安全性分析[J]. 航空学报, 2023, 44(9): 327329. |
ZHUANG L, LU Z, SONG H J, et al. Safety analysis for fly-by-wire system based on fault injection model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 327329 (in Chinese). | |
80 | 赵杰彦. 基于数字孪生的电静液作动器故障检测与容错控制方法研究[D]. 南京: 南京理工大学, 2021: 1-8. |
ZHAO J Y. Research on fault detection and fault-tolerant control methods for electro-hydraulic actuators based on digital twins[D]. Nanjing: Nanjing University of Science & Technology, 2021: 1-8 (in Chinese). | |
81 | 赵静静. 基于GO法的电静液作动器可靠性研究[D]. 大连: 大连理工大学, 2014: 1-4. |
ZHAO J J. Reliability research on electro hydrostatic actuator based on GO methodology[D]. Dalian: Dalian University of Technology, 2014: 1-4 (in Chinese). | |
82 | 吕明明, 谢华伟, 钟伟, 等. 船舶舵机电静液作动器的分数阶线性自抗扰控制[J]. 兵工学报, 2024, 45(5): 1514-1522. |
LÜ M M, XIE H W, ZHONG W, et al. Fractional order linear active disturbance rejection control for electro-hydrostatic actuator of ship rudder[J]. Acta Armamentarii, 2024, 45(5): 1514-1522 (in Chinese). | |
83 | PAVLOV A I, POLYANIN I A, KOZLOV K E. Improving the reliability of hydraulic drives components[J]. Procedia Engineering, 2017, 206: 1629-1635. |
84 | 焦宗夏, 吴帅, 李洋, 等. 液压元件及系统智能化发展现状及趋势思考[J]. 机械工程学报, 2023, 59(20): 357-384. |
JIAO Z X, WU S, LI Y, et al. Development status and trends of the intelligence of hydraulic components and systems[J]. Journal of Mechanical Engineering, 2023, 59(20): 357-384 (in Chinese). | |
85 | HAMMETT R, COAKLEY M, SEVIGNY D, et al. Automatic performance monitoring enhances Seawolf submarine ship control maintainability[J]. Naval Engineers Journal, 1998, 110(2): 49-59. |
86 | GRANIERI M N, LEVY F J. Embedded diagnostic system design using an automated diagnostic tool set[C]∥1993 International Automatic Testing Conference. Piscataway: IEEE Press, 1993: 645-649. |
87 | DAUGHAN M G. Seawolf submarine ship control system: A case study of a fault-tolerant design[J]. Naval Engineers Journal, 1994, 106(1): 54-70. |
88 | 吴皓文, 华强, 付秋华. 面向多维感知系统的设备模型方法研究[J]. 中国安防, 2022, 17(4): 102-105. |
WU H W, HUA Q, FU Q H. Research on device model method for multidimensional sensing system[J]. China Security & Protection, 2022, 17(4): 102-105 (in Chinese). | |
89 | 刘沁. 船舶舵机液压系统的智能故障诊断方法研究[D]. 北京: 北京交通大学, 2021: 1-4. |
LIU Q. Intelligent methods for fault diagnosis of hydraulic system in marine steering gear[D]. Beijing: Beijing Jiaotong University, 2021: 1-4 (in Chinese). | |
90 | QI H T, ZHAO D A, LIU D, et al. Double redundancy electro-hydrostatic actuator fault diagnosis method based on progressive fault diagnosis method[J]. Actuators, 2022, 11(9): 264. |
91 | AHN J H, YANG O. A study on the implementation of intelligent diagnosis system for motor pump[J]. Journal of the Semiconductor & Display Technology, 2019, 18(4): 87-91 (in Korean). |
92 | KHAN K, SOHAIB M, RASHID A, et al. Recent trends and challenges in predictive maintenance of aircraft’s engine and hydraulic system[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43: 403. |
93 | JIN W B, GUO H, XU J Q. Design of high-speed wet-type permanent magnet synchronous motor considering oil frictional loss[C]∥2020 IEEE Energy Conversion Congress and Exposition. Piscataway: IEEE Press, 2020: 1371-1378. |
94 | CHURN P M, MAXWELL C J, SCHOFIELD N, et al. Electro-hydraulic actuation of primary flight control surfaces[C]∥IEE Colloquium on All Electric Aircraft (Digest No. 1998/260). London: Institution of Engineering and Technology, 1998: 3/1-3/5. |
95 | POWELL D J, ATALLAH K, JEWELL G. Thermal modeling of flooded rotor electrical machines for electro-hydrostatic actuators[C]∥2007 IEEE International Conference on Electric Machines and Drives. Piscataway: IEEE Press, 2007: 1632-1637. |
96 | 李磊. 高转速电机泵动力学特性研究[D]. 杭州: 浙江大学, 2019: 159-162. |
LI L. Research on the dynamic characteristics of high speed motor-pump unit[D]. Hangzhou: Zhejiang University, 2019: 159-162 (in Chinese). | |
97 | 李祝锋, 邵云滨, 付永领, 等. 轴向柱塞式电液泵的油隙损耗与机械效率[J]. 北京航空航天大学学报, 2014, 40(6): 769-774. |
LI Z F, SHAO Y B, FU Y L, et al. Oil gap loss and mechanical efficiency of axial piston electro-hydraulic pump[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 769-774 (in Chinese). | |
98 | 冀宏, 孙磊, 王峥嵘, 等. 液压电机泵中浸油电机的负载效应[J]. 兰州理工大学学报, 2009, 35(4): 52-56. |
JI H, SUN L, WANG Z R, et al. Load effect of electro-motor of hydraulic electro-motor pump[J]. Journal of Lanzhou University of Technology, 2009, 35(4): 52-56 (in Chinese). | |
99 | 冀宏, 李志峰, 王峥嵘, 等. 液压电机叶片泵样机的性能试验[J]. 农业机械学报, 2010, 41(11): 48-51, 56. |
JI H, LI Z F, WANG Z R, et al. Performance test of the prototype of electric motor pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 48-51, 56 (in Chinese). | |
100 | 祁琦, 冀宏. 基于Ansoft的液压电机叶片泵电机的仿真研究[J]. 机床与液压, 2010, 38(17): 102-105. |
QI Q, JI H. Smulation and analysis of special motor of the hydraulic motor vane pump based on Ansoft[J]. Machine Tool & Hydraulics, 2010, 38(17): 102-105 (in Chinese). | |
101 | 王峥嵘, 冀宏, 胡启辉, 等. 液压电机叶片泵样机的噪声测量及分析[J]. 液压与气动, 2010, 34(9): 63-65. |
WANG Z R, JI H, HU Q H, et al. Noise test and analysis on an prototype of electric motor pump[J]. Chinese Hydraulics & Pneumatics, 2010, 34(9): 63-65 (in Chinese). | |
102 | 汪翔羚. 液压电机泵中电机定子形状对电磁特性和温度场的影响[D]. 兰州: 兰州理工大学, 2012: 1-13. |
WANG X L. The influence of motor stator shape on electro-magnetic characteristics and temperature field in hydraulic motor pump[D]. Lanzhou: Lanzhou University of Technology, 2012: 1-13 (in Chinese). | |
103 | LEE W K, LI S L, HAN D, et al. A review of integrated motor drive and wide-bandgap power electronics for high-performance electro-hydrostatic actuators[J]. IEEE Transactions on Transportation Electrification, 2018, 4(3): 684-693. |
104 | CHACON R, IVANTYSYNOVA M. Thermal effects on the fluid film in the cylinder block/valve plate interface due to compression and expansion of the fluid[J]. International Journal of Fluid Power System, 2018, 11(3): 136-142. |
105 | XU H G, ZHANG J H, ZHAO S J, et al. Performance optimization for high speed axial piston pump considering cylinder block tilt[J]. Chinese Journal of Aeronautics, 2023, 36(9): 437-450. |
106 | CHACON R, IVANTYSYNOVA M. Virtual prototyping of axial piston machines: Numerical method and experimental validation[J]. Energies, 2019, 12(9): 1674. |
107 | 王克龙. 轴向柱塞泵柱塞副微运动及润滑油膜的特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 5-10. |
WANG K L. Micro-motion and lubrication characteristics of piston-cylinder interface in axial piston pump[D]. Harbin: Harbin Institute of Technology, 2019: 5-10 (in Chinese). | |
108 | LYU F, YE S G, ZHANG J H, et al. Theoretical and simulation investigations on flow ripple reduction of axial piston pumps using nonuniform distribution of pistons[J]. Journal of Dynamic Systems, Measurement, and Control, 2021, 143(4): 041008. |
109 | 吕飞, 徐兵, 张军辉. 转速对EHA泵柱塞副柱塞位姿及泄漏量影响仿真分析[J]. 机械工程学报, 2018, 54(20): 123-130. |
LÜ F, XU B, ZHANG J H. Simulative analysis of piston posture and piston/cylinder interface leakage of EHA pumps by the influence of rotating speed[J]. Journal of Mechanical Engineering, 2018, 54(20): 123-130 (in Chinese). | |
110 | LYU F, ZHANG J H, SUN G M, et al. Research on wear prediction of piston/cylinder pair in axial piston pumps[J]. Wear, 2020, 456-457: 203338. |
111 | ZHAO J A, FU Y L, WANG M K, et al. Experimental research on tribological characteristics of TiAlN coated valve plate in electro-hydrostatic actuator pumps[J]. Tribology International, 2021, 155: 106782. |
112 | FU J, LYU D C, KANG J, et al. Tribological characteristics of hard-to-hard matching materials of cylinder block/valve plate interface in electro-hydrostatic actuator pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2024, 238(6): 2393-2406. |
113 | LI Y C, FU J, ZHAO J A, et al. Research on the experimental system for testing oil film stiffness of the cylinder block/valve plate interface of EHA piston pump[C]∥2022 Chinese Intelligent Systems Conference. Cham: Springer, 2022: 179-188. |
114 | 李少年, 包尚令, 杨攀, 等. 轴向柱塞泵配流盘摩擦副材料的磨损实验研究[J]. 液压气动与密封, 2021, 41(7): 1-3, 8. |
LI S N, BAO S L, YANG P, et al. Experimental study on friction pairs wear of axial piston pump port plate[J]. Hydraulics Pneumatics & Seals, 2021, 41(7): 1-3, 8 (in Chinese). | |
115 | 李玉龙, 何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与性能增强[J]. 清华大学学报(自然科学版), 2021, 61(12): 1405-1422. |
LI Y L, HE Y Y, LUO J B. Surface modifications and performance enhancements of key friction pairs in aviation hydraulic piston pumps[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12): 1405-1422 (in Chinese). | |
116 | COSTA H L, HUTCHINGS I M. Some innovative surface texturing techniques for tribological purposes[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229(4): 429-448. |
117 | GROPPER D, WANG L, HARVEY T J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings[J]. Tribology International, 2016, 94: 509-529. |
118 | MA X, WANG Q J, LU X Q, et al. Piston surface design to improve the lubrication performance of a swash plate pump[J]. Tribology International, 2019, 132: 275-285. |
119 | YE S G, TANG H S, REN Y, et al. Study on the load-carrying capacity of surface textured slipper bearing of axial piston pump[J]. Applied Mathematical Modelling, 2020, 77(1): 554-584. |
120 | PORTILLO R C. Cylinder block/valve plate interface performance investigation through the introduction of micro-surface shaping[D]. West Lafayette: Purdue University, 2014: 1-5. |
121 | CHEN W, HUANG X Y, MA J E, et al. Thermal analysis of a fluid immersed brushless DC motor for aerospace applications[J]. Applied Mechanics and Materials, 2013, 416-417: 1126-1131. |
122 | 曹克强, 李永林, 胡良谋, 等. 液压系统热特性建模方法与仿真技术的研究现状与展望[J]. 机床与液压, 2014, 42(15): 174-179, 193. |
CAO K Q, LI Y L, HU L M, et al. Current situation and trends on the study of thermal characteristics modeling and simulation of hydraulic system[J]. Machine Tool & Hydraulics, 2014, 42(15): 174-179, 193 (in Chinese). | |
123 | 白国长, 赵华强. 冷却流道结构对电机泵温升的影响研究[J]. 郑州大学学报(工学版), 2021, 42(4): 53-57. |
BAI G C, ZHAO H Q. Study on influence of cooling channel structure on temperature rise of motor pump[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(4): 53-57 (in Chinese). | |
124 | 张玉莹. 浸油式电机泵一体化热力学建模与结构优化[D]. 秦皇岛: 燕山大学, 2022: 27-38. |
ZHANG Y Y. Thermal-hydraulic modeling and structure optimization of oil-immersed motor pump[D]. Qinhuangdao: Yanshan University, 2022: 27-38 (in Chinese). | |
125 | 冀宏, 邢晖晖, 孙飞, 等. 基于流固耦合传热分析的液压电机泵温度场特征[J]. 液压与气动, 2023, 47(3): 1-8. |
JI H, XING H H, SUN F, et al. Temperature field characteristics of hydraulic motor pump based on fluid-structure coupling heat transfer analysis[J]. Chinese Hydraulics & Pneumatics, 2023, 47(3): 1-8 (in Chinese). | |
126 | SHORBAGY A, IVANTYSYN R, WEBER J. An experimental approach to simultaneously measure the temperature field and fluid film thickness in the cylinder block/valve plate gap of an axial piston pump[C]∥9th International Symposium on Turbulence Heat and Mass Transfer. Danbury: Begellhouse, 2018: 863-875. |
127 | SHEN Y L, MAZHAR A R, ZHANG P W, et al. Structure optimization of tree-shaped fins for improving the thermodynamic performance in latent heat storage[J]. International Journal of Thermal Sciences, 2023, 184: 108003. |
[1] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[2] | Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811. |
[3] | Zhenhua DOU, Kai GUO, Xiaoming HUANG, Jie SUN, Zheqing ZUO, Shoujun ZHAO. Composite adaptive tracking control of aerospace electro⁃hydrostatic actuator servo system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630160-630160. |
[4] | Xiongliang YAO, Bin ZHAO, Guihui MA. Research status and prospect of cross-media vehicle water exit [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 29598-029598. |
[5] | Yihui HAN, Jun HU, Yong YU, Jianqiao YU. Wind tunnel experimental verification of aerodynamic control force of cross⁃shaped flexible control surface [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 129280-129280. |
[6] | Weihong ZHANG, Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU. Material⁃structure integrated design for high⁃performance aerospace thin⁃walled component [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627428-627428. |
[7] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[8] | Qixiang GAO, Dingwei ZHANG, Lijun YANG, Qingfei FU. Experiment on dynamic characteristics of swirl injector under back pressure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127130-127130. |
[9] | Shuai HAO, Tielin MA, Yi WANG, Jinwu XIANG, Hongzhong MA, Baifeng JIANG, Jun CAO. Progress and application of key technologies of SensorCraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 27034-027034. |
[10] | Wenlong BAO, He JIA, Xiaopeng XUE, Xuejiao HUANG, Shuyi GAO, Wei RONG, Qi WANG, Zhuangzhi WU. Influence of ‘windows’ structure on inflation process of ringsail parachute [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226936-226936. |
[11] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[12] | Yuanyuan TU, Dayi WANG, Xiangyan ZHANG, Jiaxing LI, Xiaofeng HUANG. Reconfigurability and autonomous reconfiguration methods of spacecraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628855-628855. |
[13] | Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310-626310. |
[14] | Yongzhou LI, Di SUN, Renhua WANG, Kunyuan ZHANG. Design of inward turning inlet with controlled Mach number under non-uniform inflow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 127857-127857. |
[15] | Limin GAO, Bo OUYANG, Heng JIANG, Ning GE, Ruiyu LI. Experimental study on cut-off frequency of fast response pressure sensitive paint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 127556-127556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341