ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (5): 126434-126434.doi: 10.7527/S10006893.2021.26434
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Lei HE1,2, Weiqi QIAN1,2, Kangsheng DONG2, Xian YI1(), Congcong CHAI1
Received:
2021-09-24
Revised:
2021-10-15
Accepted:
2021-11-08
Online:
2023-03-15
Published:
2021-11-12
Contact:
Xian YI
E-mail:yixian_2000@163.com
Supported by:
CLC Number:
Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434.
1 | 郭向东, 柳庆林, 刘森云, 等. 结冰风洞中过冷大水滴云雾演化特性数值研究[J]. 航空学报, 2020, 41(8): 123655. |
GUO X D, LIU Q L, LIU S Y, et al. Numerical study of supercooled large droplet cloud evolution characteristics in icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123655 (in Chinese). | |
2 | 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2): 520711. |
YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520711 (in Chinese). | |
3 | 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734. |
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese). | |
4 | KIM H, BRAGG M. Effects of leading-edge ice accretion geometry on airfoil performance[C]∥ 17th Applied Aerodynamics Conference. Reston: AIAA, 1999. |
5 | BRAGG M, HUTCHISON T, MERRET J. Effect of ice accretion on aircraft flight dynamics[C]∥ 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
6 | 钟长生, 王立新. 结冰对飞机动力学特性影响的分析方法及其进展[J]. 飞行力学, 2004, 22(4): 22-24, 84. |
ZHONG C S, WANG L X. Analysis methods and its development about effect of ice accretion on aircraft flight dynamics characteristics[J]. Flight Dynamics, 2004, 22(4): 22-24, 84 (in Chinese). | |
7 | POKHARIYAL D, BRAGG M, HUTCHISON T, et al. Aircraft flight dynamics with simulated ice accretion[C]∥ 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
8 | 袁坤刚, 曹义华. 积冰几何特性对翼型性能影响的神经网络预测[J]. 北京航空航天大学学报, 2008, 34(8): 900-903. |
YUAN K G, CAO Y H. Effect of ice geometry to airfoil performance using neural networks prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8): 900-903 (in Chinese). | |
9 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. |
10 | 吴正文. 卷积神经网络在图像分类中的应用研究[D]. 成都: 电子科技大学, 2015. |
WU Z W. Application research of convolution neural network in image classification[D]. Chengdu: University of Electronic Science and Technology of China, 2015 (in Chinese). | |
11 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. 2015: arXiv: 1511.06434. . |
12 | GATYS L A, ECKER A S, BETHGE M. A neural algorithm of artistic style[EB/OL]. 2015: arXiv: 1508.06576. . |
13 | KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 1725-1732. |
14 | SEIDE F, LI G, YU D. Conversational speech transcription using context-dependent deep neural networks[C]∥ Interspeech 2011. ISCA: ISCA, 2011: 437-440. |
15 | 王怡星, 韩仁坤, 刘子扬, 等. 流体力学深度学习建模技术研究进展[J]. 航空学报, 2021, 42(4): 524779. |
WANG Y X, HAN R K, LIU Z Y, et al. Progress of deep learning modeling technology for fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524779 (in Chinese). | |
16 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
17 | KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4. |
18 | YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C]∥ 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017. |
19 | ZHANG Y, SUNG W J, MAVRIS D. Application of convolutional neural network to predict airfoil lift coefficient[DB/OL]. arXiv preprint: 1712.10082,2017. |
20 | WU J L, WANG J X, XIAO H, et al. Physics-informed machine learning for predictive turbulence modeling: a priori assessment of prediction confidence[DB/OL]. arXiv preprint: 1607.04563, 2016. |
21 | HUANG J J, DUAN L, WANG J X, et al. High-mach-number turbulence modeling using machine learning and direct numerical simulation database[C]∥ 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
22 | LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
23 | 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3): 444-454. |
ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 444-454 (in Chinese). | |
24 | 廖鹏, 姚磊江, 白国栋, 等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报, 2019, 34(8): 1751-1758. |
LIAO P, YAO L J, BAI G D, et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power, 2019, 34(8): 1751-1758 (in Chinese). | |
25 | RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. |
26 | GUO X X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]∥ Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 481-490. |
27 | LEE S, YOU D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics, 2019, 879: 217-254. |
28 | 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 524736. |
YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736 (in Chinese). | |
29 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
30 | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
31 | 陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2): 294-299. |
CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2): 294-299 (in Chinese). | |
32 | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]∥ International Conference on Artificial Intelligence and Statistics, 2010: 249-256. |
33 | NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]∥ Proceedings of the 27th International Conference on Machine Learning, 2010: 807-814. |
34 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]∥ The Advances in Neural Information Processing Systems, 2012: 1097-1105. |
35 | 何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37(3): 470-479. |
HE L, QIAN W Q, WANG Q, et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 470-479 (in Chinese). | |
36 | CHEN H, HE L, QIAN W Q, et al. Multiple aerodynamic coefficient prediction of airfoils using a convolutional neural network[J]. Symmetry, 2020, 12(4): 544. |
37 | 何磊, 钱炜祺, 易贤, 等. 基于转置卷积神经网络的翼型结冰冰形图像化预测方法[J]. 国防科技大学学报, 2021, 43(3): 98-106. |
HE L, QIAN W Q, YI X, et al. Graphical prediction method of airfoil ice shape based on transposed convolution neural networks[J]. Journal of National University of Defense Technology, 2021, 43(3): 98-106 (in Chinese). | |
38 | BRAGG M B. An experimental study of the aerodynamics of a NACA 0012 airfoil with a simulated glaze ice accretion: NASA-CR-179897[R]. Washington, D.C.: NASA, 1986. |
39 | BRAGG M B, et al. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
40 | BRAGG M B, KHODADOUST A, SPRING S A. Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion[J]. AIAA Journal, 1992, 30(6): 1462-1467. |
41 | CARL O G. GRUMMP version 0.2.1 user's guide[R]. Columbia: University of British Columbia, 1997. |
42 | 张耀冰, 邓有奇, 吴晓军, 等. DLR-F6翼身组合体数值计算[J]. 空气动力学学报, 2011, 29(2): 163-169. |
ZHANG Y B, DENG Y Q, WU X J, et al. Drag prediction of DLR-F6 using MFlow unstructured mesh solver[J]. Acta Aerodynamica Sinica, 2011, 29(2): 163-169 (in Chinese). | |
43 | KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL].arXiv preprint: 1412.6980, 2014. |
[1] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[2] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[3] | Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811. |
[4] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[5] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[6] | Huajie XIONG, Yijing AN, Zhulong WU, Zhihong ZHOU. Extension of Eulerian wall film model in icing simulation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729287-729287. |
[7] | Yinglin YANG, Shinan CHANG, Qiyu SHI, Haifeng QI. Experiment of shear-driven water film [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729290-729290. |
[8] | Xin SU, Runcheng GUAN, Qiao WANG, Weizheng YUAN, Xianglian LYU, Yang HE. Ice area and thickness detection method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729283-729283. |
[9] | Dazhi SHI, Weimin SANG, Shijie LI, Bo AN. Numerical simulation of water droplet impact characteristics on icing surfaces based on LBM [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729192-729192. |
[10] | Liqun CHEN, Xu ZOU, Lei ZHANG, Yingpan ZHU, Gang WANG, Jinyong CHEN. On⁃board intelligent target detection technology based on domestic commercial components [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860-728860. |
[11] | Jinyi MA, Can WANG, Tao XUE, Jianliang AI, Yiqun DONG. Development and illustrative applications of an air combat engagement database [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727538-727538. |
[12] | Pengyu LIU, Xueyao ZHU. Semantic parsing technology of air traffic control instruction in fusion airspace based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727592-727592. |
[13] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[14] | Weishi CHEN, Jia LIU, Qingbin WANG, Xianfeng LU, Jie ZHANG, Xiaolong CHEN, Yifeng HUANG. Review on technology of bird detection with weather radar [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 26781-026781. |
[15] | Wenlong BAO, He JIA, Xiaopeng XUE, Xuejiao HUANG, Shuyi GAO, Wei RONG, Qi WANG, Zhuangzhi WU. Influence of ‘windows’ structure on inflation process of ringsail parachute [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226936-226936. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341