航空学报 > 2025, Vol. 46 Issue (23): 430965-430965   doi: 10.7527/S1000-6893.2024.30965

航空锂电池热失控高温喷射冲击实验

杨娟1,2, 胡佳宁3, 佟佳成3, 张青松2()   

  1. 1.中国民航大学 工程技术训练中心,天津 300300
    2.中国民航大学 天津市城市空中交通系统技术与装备重点实验室,天津 300300 3.中国民航大学 安全科学与工程学院,天津 300300
  • 收稿日期:2024-07-18 修回日期:2024-08-26 接受日期:2024-09-11 出版日期:2024-09-19 发布日期:2024-09-18
  • 通讯作者: 张青松 E-mail:nkzqsong@126.com
  • 基金资助:
    国家重点研发计划(2025YFF1502100);中央高校基本科研业务费自然科学重点项目(3122024058);天津市城市空中交通系统技术与装备重点实验室开放基金(TJKL-UAM-202302);中国民航大学研究生科研创新资助项目(2023YJSKC09010)

Experiment on high-temperature jet impact induced by thermal runaway in aviation lithium-ion batteries

Juan YANG1,2, Jianing HU3, Jiacheng TONG3, Qingsong ZHANG2()   

  1. 1.Engineering Techniques Training Center,Civil Aviation University of China,Tianjin  300300,China
    2.Key Laboratory of Technology and Equipment of Tianjin Urban Air Transportation System,Civil Aviation University of China,Tianjin  300300,China
    3.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin  300300,China
  • Received:2024-07-18 Revised:2024-08-26 Accepted:2024-09-11 Online:2024-09-19 Published:2024-09-18
  • Contact: Qingsong ZHANG E-mail:nkzqsong@126.com
  • Supported by:
    National Key Research and Development Program of China(2025YFF1502100);Natural Science Key Projects of Fundamental Research Funds for the Central Universities(3122024058);Open Fund of Key Laboratory of Technology and Equipment of Tianjin Urban Air Transportation System(TJKL-UAM-202302);Graduate Research and Innovation Funding Program of Civil Aviation University of China(2023YJSKC09010)

摘要:

在电池包或电池舱等密闭空间内,航空锂电池热失控产生的喷射冲击对结构的破坏效应危害极大。采用冲击高温、冲击力和冲量为评估参数,自主搭建喷射冲击实验平台,通过实测数据量化研究电池包体或电池舱体结构在实际使用场景下的受损程度,并分析电池荷电状态、电池与结构间冲击距离、舱体厚度对电池热失控喷射冲击危害的影响。实验表明:100%荷电状态(SOC)电池发生热失控时,1.0 mm和1.2 mm厚度实验板受冲击后发生不同程度的穿孔,最大穿孔面积可达136.488 mm2;1.5 mm厚度实验舱体均未发生穿孔,实现有效包容。随着冲击距离从1 cm增加至3 cm,实验板背板峰值温度显著降低,单位距离平均降低率为47.5 ℃/cm;而最大冲击力随之增加,平均单位距离增长率为142.95 N/cm。综上,为控制板材厚度以满足轻量化设计,可综合分析热失控喷射温度和冲击力危害,合理选择电池与壳体或舱体上壁板间隙距离以实现电池包体或舱体对热失控高温喷射冲击的包容。

关键词: 航空锂电池, 热失控, 温度, 喷射冲击, 冲击力, 冲量

Abstract:

In enclosed spaces such as battery packs or battery compartments, the jet impact generated by thermal runaway of aviation lithium batteries can cause significant damage to structures. This paper uses high-temperature impact, impact force, and impulse as evaluation parameters. An independently constructed jet impact experimental platform is employed to quantitatively study the damage degree of battery pack or battery compartment structure in actual use scenarios through measured data. Moreover, we also analyze the impact of battery state of charge, impact distance between battery and structure, and compartment thickness on the impact hazard of battery thermal runaway jet impact. The experiment showed that when the 100% State of Charge (SOC) battery had thermal runaway, the 1.0 mm and 1.2 mm thickness experimental plates were perforated to varying degrees after being impacted, with the maximum perforation area reaching 136.488 mm2. The 1.5 mm thickness experimental cabin did not perforate and achieved effective containment. As the impact distance increases from 1 cm to 3 cm, the peak temperature of the experimental plate back plate decreases significantly, with an average decrease rate of 47.5 ℃/cm per unit distance; the maximum impact force increases accordingly, with an average unit distance growth rate of 142.95 N/cm. In summary, to control the thickness of the plate to meet the lightweight design, it is necessary to comprehensively analyze the thermal runaway spray temperature and impact hazard, and reasonably select the gap distance between the battery and the shell or the upper wall panel of the cabin to achieve the containment of the thermal runaway high-temperature spray impact by the battery pack or cabin.

Key words: aviation lithium batteries, thermal runaway, temperature, jet impact, impact force, impulse

中图分类号: