收稿日期:
2023-07-19
修回日期:
2023-08-14
接受日期:
2023-10-20
出版日期:
2024-06-25
发布日期:
2023-11-01
通讯作者:
尚勇
E-mail:cs881013@buaa.edu.cn
基金资助:
Yong SHANG(), Huijun YANG, Yang FENG, Changzhen ZHANG, Yanling PEI, Shengkai GONG
Received:
2023-07-19
Revised:
2023-08-14
Accepted:
2023-10-20
Online:
2024-06-25
Published:
2023-11-01
Contact:
Yong SHANG
E-mail:cs881013@buaa.edu.cn
Supported by:
摘要:
获得缺乏的涡轮叶片涂层表面温度分布数据是当前航空发动机材料设计面临的关键问题,数据缺乏严重限制了中国先进飞行器的性能提升。热障涂层(涡轮叶片用)添加少量稀土发光元素后可成为一种新型智能材料——智能热障涂层(STBC),是目前实现发动机服役叶片涂层温度分布测定最有潜力的方法。本文详细介绍了智能热障涂层在线(热障传感涂层)/离线(热历史涂层)测温的原理和方法。基于不同智能涂层的制备工艺,阐述了近年来利用智能热障涂层技术对航空发动机热端部件的表面温度分布及界面温度梯度检测的研究进展。基于航空发动机不同热端部件的测温需求,总结了目前国内外智能热障涂层测温技术的实际工业应用。且基于现有稀土元素掺杂对热障涂层本征性能的影响,说明了智能热障涂层实际应用的可行性。最后指出了该技术实际应用于航空发动机热端部件测温仍需解决的问题,并对其发展方向进行展望。
中图分类号:
尚勇, 杨惠君, 冯阳, 张长桢, 裴延玲, 宫声凯. 基于磷光测温技术的智能热障涂层研究进展[J]. 航空学报, 2024, 45(12): 29341-029341.
Yong SHANG, Huijun YANG, Yang FENG, Changzhen ZHANG, Yanling PEI, Shengkai GONG. Research progress of smart thermal barrier coatings based on phosphorescence temperature measurement technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 29341-029341.
1 | 胡娜, 赵伟, 晋小超, 等. 航空发动机涡轮叶片接触式测温技术应用进展[J]. 航空工程进展, 2023, 14(1): 1-12. |
HU N, ZHAO W, JIN X C, et al. Advances in application of contact temperature measurement technology for aero-engineblade[J]. Advances in Aeronautical Science and Engineering, 2023, 14(1): 1-12 (in Chinese). | |
2 | DAROLIA R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews, 2013, 58(6): 315-348. |
3 | 周益春, 杨丽, 刘志远, 等. 涡轮叶片热障涂层隔热效果的研究进展[J]. 中国材料进展, 2020, 39(10): 707-722, 738. |
ZHOU Y C, YANG L, LIU Z Y, et al. Research progress on insulation performance of thermal barrier coatings on turbine blade[J]. Materials China, 2020, 39(10): 707-722, 738 (in Chinese). | |
4 | 姚艳玲, 代军, 黄春峰. 现代航空发动机温度测试技术发展综述[J]. 航空制造技术, 2015, 58(12): 103-107. |
YAO Y L, DAI J, HUANG C F. Development for temperature measurement technology in modern aeroengine[J]. Aeronautical Manufacturing Technology, 2015, 58(12): 103-107 (in Chinese). | |
5 | TOUGAS I M, AMANI M, GREGORY O J. Metallic and ceramic thin film thermocouples for gas turbine engines[J]. Sensors, 2013, 13(11): 15324-15347. |
6 | 李杨, 李志敏, 熊兵,等. 航空发动机涡轮叶片温度测量技术现状与发展[C]∥ 第十五届中国科协年会第13分会场: 航空发动机设计、制造与应用技术研讨会论文集. 贵阳: 中国科协, 2013: 646-650. |
LI Y, LI Z M, XIONG B, et al. Present situation and development of temperature measurement technology of aero-engine turbine blade[C]∥ The 13th Branch of the 15th Annual Conference of Chinese Association for Science and Technology: Symposium on Aeroengine Design, Manufacture and Application Technology. Guiyang:Chinese Association for Science and Technology,2013: 646⁃650 (in Chinese). | |
7 | 黄春峰, 蒋明夫, 毛茂华. 国外航空发动机薄膜热电偶技术发展研究[J]. 航空发动机, 2011, 37(6): 53-57. |
HUANG C F, JIANG M F, MAO M H. Development on thin-film thermocouples technology for foreign aeroengine[J]. Aeroengine, 2011, 37(6): 53-57 (in Chinese). | |
8 | 熊兵, 侯敏杰, 陈洪敏, 等. 辐射测温技术在涡轮叶片温度场中的应用[J]. 燃气涡轮试验与研究, 2008, 21(3): 50-54. |
XIONG B, HOU M J, CHEN H M, et al. Application of infrared thermometer in turbine blade temperature field[J]. Gas Turbine Experiment and Research, 2008, 21(3): 50-54 (in Chinese). | |
9 | DUAN F L, HU M K, LIN Y Z, et al. A new high-temperature sensing device by making use of TBC thermistor for intelligent propulsion systems[C]∥ Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston: AIAA, 2018. |
10 | 刘丽华, 王军, 新力, 等. 光纤温度传感器的应用及发展[J]. 仪器仪表学报, 2003, 24(5): 547-550. |
LIU L H, WANG J, XIN L, et al. Applied study and development of fiber-optic temperature sensor[J]. Chinese Journal of Scientific Instrument, 2003, 24(5): 547-550 (in Chinese). | |
11 | 韩国庆, 刘显明, 雷小华, 等. 光纤传感技术在航空发动机温度测试中的应用[J]. 仪器仪表学报, 2022, 43(1): 145-164. |
HAN G Q, LIU X M, LEI X H, et al. Application of optical fiber sensing in aero-engine temperature test[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 145-164 (in Chinese). | |
12 | RABHIOU A, FEISTJ, KEMPFA, et al. Concept for a phosphorescent thermal history sensor[C]∥ Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 3: Controls, Diagnostics and Instrumentation; Cycle Innovations. New York: ASME, 2010. |
13 | 王超, 苟学科, 段英, 等. 航空发动机涡轮叶片温度测量综述[J]. 红外与毫米波学报, 2018, 37(4): 501-512. |
WANG C, GOU X K, DUAN Y, et al. A review of aero-engine turbine blade temperature measurement[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 501-512 (in Chinese). | |
14 | 周峰, 欧阳永杰, 王龙南, 等. 航空发动机晶体测温技术应用研究[J]. 科学技术创新, 2022(17): 165-168. |
ZHOU F, OUYANG Y J, WANG L N, et al. Application research on crystal temperature measurement technology of aero-engine[J]. Scientific and Technological Innovation, 2022(17): 165-168 (in Chinese). | |
15 | ALLISON S W, GILLIES G T. Remote thermometry with thermographic phosphors: Instrumentation and applications[J]. Review of Scientific Instruments, 1997, 68(7): 2615-2650. |
16 | CHOY K L, HEYES A L, FEIST J P. Thermal barrier coating with thermoluminescent indicator material embedded therein: US8173266[P]. 2012⁃05⁃08. |
17 | FEIST J P, NICHOLLS J R, HEYES A L. Determining thermal history of components: US20110069735[P]. 2011-03-24. |
18 | CHAMBERS M D, CLARKE D R. Doped oxides for high-temperature luminescence and lifetime thermometry[J]. Annual Review of Materials Research, 2009, 39: 325-359. |
19 | 杨丽霞, 付雅婷, 赵晓峰, 等. 热障涂层在线/离线磷光温度测量技术研究进展[J]. 航空制造技术, 2022, 65(3): 71-81. |
YANG L X, FU Y T, ZHAO X F, et al. Research progress of on-line/off-line phosphor thermometry technology for thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2022, 65(3): 71-81 (in Chinese). | |
20 | HEYES A L, RABHIOU A, FEIST J P, et al. Thermal history sensing with thermographic phosphors[C]∥ AIP Conference Proceedings. New York: AIP, 2013: 891-896. |
21 | ZHOU Y H, LIN J, WANG S B, et al. Preparation of Y3Al5O12:Eu phosphors by citric⁃gel method and their luminescent properties[J]. Optical Materials, 2002, 20(1): 13-20. |
22 | YÁÑEZ-GONZÁLEZ Á, VAN WACHEM B, SKINNER S, et al. On the kinetics of thermal oxidation of the thermographic phosphor BaMgAL10O17:Eu[J]. Materials & Design, 2016, 108: 145-150. |
23 | GONZÁLEZ Á Y, SKINNER S, BEYRAU F, et al. Reusable thermal history sensing via oxidation of a divalent rare earth ion-based phosphor synthesized by the sol⁃gel process[J]. Heat Transfer Engineering, 2015, 36(14-15): 1275-1281. |
24 | ARAGUAS RODRIGUEZ S, PERAL JIMÉNEZ D, PILGRIM C C, et al. Feasibility of the use of thermal history paints for long term exposure of low temperature life critical components[C]∥ ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 4: Controls, Diagnostics, and Instrumentation. New York: ASME, 2023. |
25 | WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. Journal of Applied Physics, 2003, 94(8): 4743-4756. |
26 | KHALID A H, KONTIS K. Thermographic phosphors for high temperature measurements: Principles, current state of the art and recent applications[J]. Sensors, 2008, 8(9): 5673-5744. |
27 | GOSS L P, SMITH A A, POST M E. Surface thermometry by laser-induced fluorescence[J]. Review of Scientific Instruments, 1989, 60(12): 3702-3706. |
28 | FEIST J P, HEYES A L. The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications[J]. Measurement Science and Technology, 2000, 11(7): 942-947. |
29 | WILLIAMS A T R, WINFIELD S A, MILLER J N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer[J]. Analyst, 1983, 108(1290):1067⁃1071. |
30 | ALLISON S W, GOEDEKE S M, CATES M R, et al. Fluorescence rise time measurements for high temperature fluorescence-based thermometry[M]. Washington, D.C.: Department of Energy, 2005. |
31 | CAI T, PARK Y, MOHAMMADSHAHI S, et al. Rise time-based phosphor thermometry using Mg4FGeO6:Mn4+ [J]. Measurement Science and Technology, 2021, 32(1): 015201. |
32 | OMRANE A, OSSLER F, ALDÉN M. Two-dimensional surface temperature measurements of burning materials[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2653-2659. |
33 | ALDÉN M, OMRANE A, RICHTER M, et al. Thermographic phosphors for thermometry: A survey of combustion applications[J]. Progress in Energy and Combustion Science, 2011, 37(4): 422-461. |
34 | 王鹏程, 赵运才, 刘明, 等. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076. |
WANG P C, ZHAO Y C, LIU M, et al. Research status and trend of YSZ thermal barrier coatings doped with rare earth oxides[J]. Materials Reports, 2021, 35(9): 9069-9076 (in Chinese). | |
35 | LASHMI P G, MAJITHIA S, SHWETHA V, et al. Improved hot corrosion resistance of plasma sprayed YSZ/Gd2Zr2O7 thermal barrier coating over single layer YSZ[J]. Materials Characterization, 2019, 147: 199-206. |
36 | SU Y J, TRICE R W, FABER K T, et al. Thermal conductivity, phase stability, and oxidation resistance of Y3Al5O12 (YAG)/Y2O3⁃ZrO2 (YSZ) thermal-barrier coatings[J]. Oxidation of Metals, 2004, 61(3): 253-271. |
37 | SHEN Y, CHAMBERS M D, CLARKE D R. Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ[J]. Surface and Coatings Technology, 2008, 203(5-7): 456-460. |
38 | CHAMBERS M D, CLARKE D R. Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials[J]. Surface and Coatings Technology, 2007, 202(4-7): 688-692. |
39 | SKINNER S J, FEIST J P, BROOKS I J E, et al. YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications[J]. Sensors and Actuators B: Chemical, 2009, 136(1): 52-59. |
40 | 杨金华,董禹飞,杨瑞, 等. 航空发动机用陶瓷基复合材料研究进展[J]. 航空动力, 2021(5): 56-59. |
YANG J H, DONG Y F, YANGR, et al. Progress of ceramic matrix composites for aero engine[J]. Aerospace Power, 2021(5): 56-59 (in Chinese). | |
41 | CHAMBERS M D, ROUSSEVE P A, CLARKE D R. Luminescence thermometry for environmental barrier coating materials[J]. Surface and Coatings Technology, 2008, 203(5-7): 461-465. |
42 | PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284. |
43 | FEIST J P, HEYES A L, NICHOLLS J R. Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001, 215(6): 333-341. |
44 | CLARKE D. Embedded optical sensors for thermal barrier coatings: FG26-03NT41794[R]. Washington, D.C.: Department of Energy, 2004. |
45 | 王志平, 许婧, 刘延宽. 热障涂层荧光测温法的现状与发展研究[J]. 热加工工艺, 2021, 50(22): 6-13. |
WANG Z P, XU J, LIU Y K. Research on current status and development of fluorescence thermometry for thermal barrier coatings[J]. Hot Working Technology, 2021, 50(22): 6-13 (in Chinese). | |
46 | CHEN X, MUTASIM Z, PRICE J, et al. Industrial sensor TBCs: Studies on temperature detection and durability[J]. International Journal of Applied Ceramic Technology, 2005, 2(5): 414-421. |
47 | PILGRIM C C, HEYES A L, FEIST J P. Thermal history sensors for non-destructive temperature measurements in harsh environments[C]∥ AIP Conference Proceedings. New York: AIP Publishing, 2014: 1609-1616. |
48 | STENDERS D, KARADAGLI I, PFLITSCH C, et al. Sol-gel deposited thermographic phosphors as possible thermal history coatings[C]∥ IET & ISA 60th International Instrumentation Symposium. London: IET, 2014: 1-6. |
49 | DENG T L, YAN S R, HU J G. Effect of calcination temperature on up-conversion photoluminescence of the GdAlO3: Er3+, Yb3+ phosphor[J]. ECS Journal of Solid State Science and Technology, 2014, 4(3): R48-R53. |
50 | COPIN E B, MASSOL X, AMIEL S, et al. Novel erbia-yttria Co-doped zirconia fluorescent thermal history sensor[J]. Smart Materials and Structures, 2017, 26(1): 015001. |
51 | AMIEL S, COPIN E, SENTENAC T, et al. On the thermal sensitivity and resolution of a YSZ:Er3+/YSZ:Eu3+ fluorescent thermal history sensor[J]. Sensors and Actuators A: Physical, 2018, 272: 42-52. |
52 | ELDRIDGE J I, BENCIC T J, ALLISON S W, et al. Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors[J]. Journal of Thermal Spray Technology, 2004, 13(1): 44-50. |
53 | YANG L X, PENG D, ZHAO C S, et al. Evaluation of the in-depth temperature sensing performance of Eu- and Dy-doped YSZ in air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2017, 316: 210-218. |
54 | ABOU NADA F, LANTZ A, LARFELDT J, et al. Remote temperature sensing on and beneath atmospheric plasma sprayed thermal barrier coatings using thermographic phosphors[J]. Surface and Coatings Technology, 2016, 302: 359-367. |
55 | GENTLEMAN M M, ELDRIDGE J I, ZHU D M, et al. Non-contact sensing of TBC/BC interface temperature in a thermal gradient[J]. Surface and Coatings Technology, 2006, 201(7): 3937-3941. |
56 | STEENBAKKER R J L, FEIST J P, WELLMAN R G, et al. Sensor thermal barrier coatings: Remote in situ condition monitoring of EB-PVD coatings at elevated temperatures[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(4): 041301. |
57 | GENTLEMAN M M, CLARKE D R. Concepts for luminescence sensing of thermal barrier coatings[J]. Surface and Coatings Technology, 2004, 188-189: 93-100. |
58 | COPIN É, SENTENAC T, LE MAOULT Y, et al. Feasibility of luminescent multilayer sol-gel thermal barrier coating manufacturing for future applications in through-thickness temperature gradient sensing[J]. Surface and Coatings Technology, 2014, 260: 90-96. |
59 | 刘郑红, 余亚丽, 程伟伦, 等. 电子束物理气相沉积热障涂层隔热性能的磷光寿命在线测量[J]. 上海交通大学学报, 2023, 57(9): 1186-1195. |
LIU Z H, YU Y L, CHENG W L, et al. Evaluation of thermal insulation performance of EB-PVD YSZ thermal barrier coatings by phosphorescence lifetime online measurement[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1186-1195 (in Chinese). | |
60 | 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术, 2022, 43(2): 113-131. |
DU K, CHEN Q H, MENG X L, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology, 2022, 43(2): 113-131 (in Chinese). | |
61 | HEYES A L, RABHIOU A, FEIST J P, et al. Phosphor based temperature indicating paints[C]∥ Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation. New York:American Society of Mechanical Engineers, 2012: 927⁃933. |
62 | KREWINKEL R, FÄRBER J, ORTH U, et al. Validation of surface temperature measurements on a combustor liner under full-load conditions using a novel thermal history paint[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(4): 041508. |
63 | FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Application of an industrial sensor coating system on a Rolls-Royce jet engine for temperature detection[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(1): 012101. |
64 | FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Precision temperature detection using a phosphorescence sensor coating system on a Rolls-Royce Viper engine[C]∥Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 917-926. |
65 | YAÑEZ GONZALEZ A, PILGRIM C C, FEIST J P, et al. On-line temperature measurement inside a thermal barrier sensor coating during engine operation[J]. Journal of Turbomachinery, 2015, 137(10): 101004. |
66 | SOLLAZZO P Y, FEIST J P, BERTHIER S, et al. Application of a production line phosphorescence sensor coating system on a jet engine for surface temperature detection[C]∥AIP Conference Proceedings. New York: AIP, 2013: 897⁃902. |
67 | NAU P, YIN Z Y, LAMMEL O, et al. Wall temperature measurements in gas turbine combustors with thermographic phosphors[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(4): 041021. |
68 | NAU P, GÖRS S, ARNDT C, et al. Wall temperature measurements in a full-scale gas turbine combustor test rig with fiber coupled phosphor thermometry[J]. Journal of Turbomachinery, 2021, 143(1): 011007. |
69 | NAU P, YIN Z Y, GEIGLE K P, et al. Wall temperature measurements at elevated pressures and high temperatures in sooting flames in a gas turbine model combustor[J]. Applied Physics B, 2017, 123(12): 279. |
70 | ARNDT C M, NAU P, MEIER W. Characterization of wall temperature distributions in a gas turbine model combustor measured by 2D phosphor thermometry[J]. Proceedings of the Combustion Institute, 2021, 38(1): 1867-1875. |
71 | ARAGUÁS RODRÍGUEZ S, JELÍNEK T, MICHÁLEK J, et al. Accelerated thermal profiling of gas turbine components using luminescent thermal history paints[J]. Journal of the Global Power and Propulsion Society, 2018, 2: 344-361. |
72 | ELDRIDGE J I, ALLISON S W, JENKINS T P, et al. Surface temperature measurements from a stator vane doublet in a turbine afterburner flame using a YAG:Tm thermographic phosphor[J]. Measurement Science and Technology, 2016, 27(12): 125205. |
73 | TOBIN K W, ALLISON S W, CATES M R, et al. High-temperature phosphor thermometry of rotating turbine blades[J]. AIAA Journal, 1990, 28(18): 1485-1490. |
74 | MCCLEAN I P, SIMONS A J, THOMAS C B, et al. Comparison between thin film and bonded powder phosphors for thermographic sensing in gas turbine engines[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(1): 129-131. |
75 | JENKINS T P, HESS C F, ALLISON S W, et al. Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors[J]. Measurement Science and Technology, 2020, 31(4): 044003. |
76 | ZHANG Y L, GUOL, YANG Y P, et al. Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chinese Journal of Aeronautics, 2012, 25(6): 948-953. |
77 | JEON H, LEE I, OH Y. Changes in high-temperature thermal properties of modified YSZ with various rare earth doping elements[J]. Ceramics International, 2022, 48(6): 8177-8185. |
78 | 冀晓鹃, 宫声凯, 徐惠彬, 等. 添加稀土元素对热障涂层YSZ陶瓷层晶格畸变的影响[J]. 航空学报, 2007, 28(1): 196-200. |
JI X J, GONG S K, XU H B, et al. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion[J]. Acta Aeronautica et AstronauticaSinica, 2007, 28(1): 196-200 (in Chinese). | |
79 | TIAN H L, WANG C L, GUO M Q, et al. Microstructure and luminescence properties of YSZ-based thermal barrier coatings modified by Eu2O3 [J]. Ceramics International, 2020, 46(4): 4444-4453. |
80 | HEYES A L, FEIST J P, CHEN X, et al. Optical nondestructive condition monitoring of thermal barrier coatings[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(6): 061301. |
81 | 刘延宽, 许婧, 李尧, 等. Eu3+掺杂对YSZ热障涂层隔热性能与涂层界面断裂韧性的影响研究[J]. 稀有金属材料与工程, 2021, 50(5): 1699-1705. |
LIU Y K, XU J, LIY, et al. Effect of Eu3+ doping on thermal insulation property and interfacial fracture toughness of YSZ thermal barrier coatings[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1699-1705 (in Chinese). | |
82 | HALDAR S, WARREN P, FOULIARD Q, et al. Synchrotron XRD measurements of thermal barrier coating configurations with rare earth elements for phosphor thermometry[C]∥ Proceedings of ASME Turbo Expo2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019. |
83 | FOULIARD Q, HERNANDEZ J, EBRAHIMI H, et al. Synchrotron X-ray diffraction to quantify in⁃situ strain on rare-earth doped yttria-stabilized zirconia thermal barrier coatings[C]∥ Proceedings of ASME Turbo Expo2021:Turbomachinery Technical Conference and Exposition. New York: ASME, 2021. |
[1] | 冀晓鹃;宫声凯;徐惠彬;刘福顺. 添加稀土元素对热障涂层YSZ陶瓷层晶格畸变的影响[J]. 航空学报, 2007, 28(1): 196-200. |
[2] | 孟亮;郑修麟. 稀土元素及杂质在铝锂合金中的作用研究现状与发展[J]. 航空学报, 1998, 19(2): 129-136. |
[3] | 沈英俊;季道馨;徐永利;陈昌麒. 快速凝固Al-Fe-MRE高温铝合金的研究[J]. 航空学报, 1995, 16(5): 539-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学